Generalization of Metropolis and heat-bath sampling for Monte Carlo simulations

For a wide class of applications of the Monte Carlo method, we describe a general sampling methodology that is guaranteed to converge to a specified equilibrium distribution function. The method is distinct from that of Metropolis in that it is sometimes possible to arrange for unconditional accepta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999-08, Vol.60 (2 Pt A), p.1189-1194
1. Verfasser: Boghosian, B M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1194
container_issue 2 Pt A
container_start_page 1189
container_title Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
container_volume 60
creator Boghosian, B M
description For a wide class of applications of the Monte Carlo method, we describe a general sampling methodology that is guaranteed to converge to a specified equilibrium distribution function. The method is distinct from that of Metropolis in that it is sometimes possible to arrange for unconditional acceptance of trial moves. It involves sampling states in a local region of phase space with probability equal to, in the first approximation, the square root of the desired global probability density function. The validity of this choice is derived from the Chapman-Kolmogorov equation, and the utility of the method is illustrated by a prototypical numerical experiment.
doi_str_mv 10.1103/PhysRevE.60.1189
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69522430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69522430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-d06e9d337194c1f5ff31fb49ea5a01a75697e6dabe2d3923a4271ea71e6e05133</originalsourceid><addsrcrecordid>eNpFkEFLw0AQhRdRbK3ePcmevKXuZpPd7FGKVqGlIgrewiSZtZEkG3cTof56E1txYJjh8b53eIRccjbnnImbp-3OP-PX3VyOQqKPyJQzHQdCJep4_KUIZMzfJuTM-w82DGfslEw411InSk_JZokNOqjKb-hK21Br6Bo7Z1tblZ5CU9AtQhdk0G2ph7qtyuadGuvo2jYd0gW4ylJf1n31y_tzcmKg8nhxuDPyen_3sngIVpvl4-J2FeShVl1QMIm6EEJxHeXcxMYIbrJII8TAOKhYaoWygAzDQuhQQBQqjjCsRBZzIWbkep_bOvvZo-_SuvQ5VhU0aHufSh2HYSTYYGR7Y-6s9w5N2rqyBrdLOUvHEtO_ElM5CokekKtDdp_VWPwDh9bED5_Zb7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69522430</pqid></control><display><type>article</type><title>Generalization of Metropolis and heat-bath sampling for Monte Carlo simulations</title><source>American Physical Society Journals</source><creator>Boghosian, B M</creator><creatorcontrib>Boghosian, B M</creatorcontrib><description>For a wide class of applications of the Monte Carlo method, we describe a general sampling methodology that is guaranteed to converge to a specified equilibrium distribution function. The method is distinct from that of Metropolis in that it is sometimes possible to arrange for unconditional acceptance of trial moves. It involves sampling states in a local region of phase space with probability equal to, in the first approximation, the square root of the desired global probability density function. The validity of this choice is derived from the Chapman-Kolmogorov equation, and the utility of the method is illustrated by a prototypical numerical experiment.</description><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.60.1189</identifier><identifier>PMID: 11969879</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999-08, Vol.60 (2 Pt A), p.1189-1194</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-d06e9d337194c1f5ff31fb49ea5a01a75697e6dabe2d3923a4271ea71e6e05133</citedby><cites>FETCH-LOGICAL-c297t-d06e9d337194c1f5ff31fb49ea5a01a75697e6dabe2d3923a4271ea71e6e05133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11969879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boghosian, B M</creatorcontrib><title>Generalization of Metropolis and heat-bath sampling for Monte Carlo simulations</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics</addtitle><description>For a wide class of applications of the Monte Carlo method, we describe a general sampling methodology that is guaranteed to converge to a specified equilibrium distribution function. The method is distinct from that of Metropolis in that it is sometimes possible to arrange for unconditional acceptance of trial moves. It involves sampling states in a local region of phase space with probability equal to, in the first approximation, the square root of the desired global probability density function. The validity of this choice is derived from the Chapman-Kolmogorov equation, and the utility of the method is illustrated by a prototypical numerical experiment.</description><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLw0AQhRdRbK3ePcmevKXuZpPd7FGKVqGlIgrewiSZtZEkG3cTof56E1txYJjh8b53eIRccjbnnImbp-3OP-PX3VyOQqKPyJQzHQdCJep4_KUIZMzfJuTM-w82DGfslEw411InSk_JZokNOqjKb-hK21Br6Bo7Z1tblZ5CU9AtQhdk0G2ph7qtyuadGuvo2jYd0gW4ylJf1n31y_tzcmKg8nhxuDPyen_3sngIVpvl4-J2FeShVl1QMIm6EEJxHeXcxMYIbrJII8TAOKhYaoWygAzDQuhQQBQqjjCsRBZzIWbkep_bOvvZo-_SuvQ5VhU0aHufSh2HYSTYYGR7Y-6s9w5N2rqyBrdLOUvHEtO_ElM5CokekKtDdp_VWPwDh9bED5_Zb7s</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>Boghosian, B M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990801</creationdate><title>Generalization of Metropolis and heat-bath sampling for Monte Carlo simulations</title><author>Boghosian, B M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-d06e9d337194c1f5ff31fb49ea5a01a75697e6dabe2d3923a4271ea71e6e05133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boghosian, B M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boghosian, B M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization of Metropolis and heat-bath sampling for Monte Carlo simulations</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics</addtitle><date>1999-08-01</date><risdate>1999</risdate><volume>60</volume><issue>2 Pt A</issue><spage>1189</spage><epage>1194</epage><pages>1189-1194</pages><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>For a wide class of applications of the Monte Carlo method, we describe a general sampling methodology that is guaranteed to converge to a specified equilibrium distribution function. The method is distinct from that of Metropolis in that it is sometimes possible to arrange for unconditional acceptance of trial moves. It involves sampling states in a local region of phase space with probability equal to, in the first approximation, the square root of the desired global probability density function. The validity of this choice is derived from the Chapman-Kolmogorov equation, and the utility of the method is illustrated by a prototypical numerical experiment.</abstract><cop>United States</cop><pmid>11969879</pmid><doi>10.1103/PhysRevE.60.1189</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-651X
ispartof Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999-08, Vol.60 (2 Pt A), p.1189-1194
issn 1063-651X
1095-3787
language eng
recordid cdi_proquest_miscellaneous_69522430
source American Physical Society Journals
title Generalization of Metropolis and heat-bath sampling for Monte Carlo simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20of%20Metropolis%20and%20heat-bath%20sampling%20for%20Monte%20Carlo%20simulations&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Boghosian,%20B%20M&rft.date=1999-08-01&rft.volume=60&rft.issue=2%20Pt%20A&rft.spage=1189&rft.epage=1194&rft.pages=1189-1194&rft.issn=1063-651X&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.60.1189&rft_dat=%3Cproquest_cross%3E69522430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69522430&rft_id=info:pmid/11969879&rfr_iscdi=true