Using a Mixed Effects Model to Estimate Geographic Variation in Cancer Rates

Commonly used methods for depicting geographic variation in cancer rates are based on rankings. They identify where the rates are high and low but do not indicate the magnitude of the rates nor their variability. Yet such measures of variability may be useful in suggesting which types of cancer warr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 1999-09, Vol.55 (3), p.774-781
Hauptverfasser: Pennello, Gene A., Devesa, Susan S., Gail, Mitchell H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781
container_issue 3
container_start_page 774
container_title Biometrics
container_volume 55
creator Pennello, Gene A.
Devesa, Susan S.
Gail, Mitchell H.
description Commonly used methods for depicting geographic variation in cancer rates are based on rankings. They identify where the rates are high and low but do not indicate the magnitude of the rates nor their variability. Yet such measures of variability may be useful in suggesting which types of cancer warrant further analytic studies of localized risk factors. We consider a mixed effects model in which the logarithm of the mean Poisson rate is additive in fixed stratum effects (e.g., age effects) and in logarithms of random relative risk effects associated with geographic areas. These random effects are assumed to follow a gamma distribution with unit mean and variance 1/α, similar to Clayton and Kaldor (1987, Biometrics 43, 671-681). We present maximum likelihood and method-of-moments estimates with standard errors for inference on α-1/2, the relative risk standard deviation (RRSD). The moment estimates rely on only the first two moments of the Poisson and gamma distributions but have larger standard errors than the maximum likelihood estimates. We compare these estimates with other measures of variability. Several examples suggest that the RRSD estimates have advantages compared to other measures of variability.
doi_str_mv 10.1111/j.0006-341X.1999.00774.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69511711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2533603</jstor_id><sourcerecordid>2533603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4514-11dbbe5cf2dacbbb26ac4b73d577f91b7576baa3d8f6f43d28bfc92fd53da1703</originalsourceid><addsrcrecordid>eNqNkM1uEzEUhS0EoiHwBghZLNhN8LXH48yCBQ1pqJS0EqKQneXf4iGZCfZETd8eh4mCxApv7KvznSPfgxAGMoF83jcTQkhVsBLWE6jrOo9ClJPDEzQCXkJBSkqeotEZukAvUmryWHNCn6MLAAY8iyO0vEuhvccKr8LBWTz33pk-4VVn3Qb3HZ6nPmxV7_DCdfdR7X4Eg7-pGFQfuhaHFs9Ua1zEXzKTXqJnXm2Se3W6x-juav519rlY3i6uZx-XhSk5lAWA1dpx46lVRmtNK2VKLZjlQvgatOCi0koxO_WVL5mlU-1NTb3lzCoQhI3RuyF3F7tfe5d6uQ3JuM1Gta7bJ1nVHEDkJcfo7T9g0-1jm_8mKYVqWle0zNB0gEzsUorOy13MO8dHCUQe65aNPDYpj03KY93yT93ykK1vTvl7vXX2r_HUbwY-DMBD2LjH_w6Wl9e3q_zK_teDv0l9F89-yhmrCMtyMcgh9e5wllX8KSvBBJffbxbyZr2mBAiRn9hvuQGmHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221689624</pqid></control><display><type>article</type><title>Using a Mixed Effects Model to Estimate Geographic Variation in Cancer Rates</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Pennello, Gene A. ; Devesa, Susan S. ; Gail, Mitchell H.</creator><creatorcontrib>Pennello, Gene A. ; Devesa, Susan S. ; Gail, Mitchell H.</creatorcontrib><description>Commonly used methods for depicting geographic variation in cancer rates are based on rankings. They identify where the rates are high and low but do not indicate the magnitude of the rates nor their variability. Yet such measures of variability may be useful in suggesting which types of cancer warrant further analytic studies of localized risk factors. We consider a mixed effects model in which the logarithm of the mean Poisson rate is additive in fixed stratum effects (e.g., age effects) and in logarithms of random relative risk effects associated with geographic areas. These random effects are assumed to follow a gamma distribution with unit mean and variance 1/α, similar to Clayton and Kaldor (1987, Biometrics 43, 671-681). We present maximum likelihood and method-of-moments estimates with standard errors for inference on α-1/2, the relative risk standard deviation (RRSD). The moment estimates rely on only the first two moments of the Poisson and gamma distributions but have larger standard errors than the maximum likelihood estimates. We compare these estimates with other measures of variability. Several examples suggest that the RRSD estimates have advantages compared to other measures of variability.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.0006-341X.1999.00774.x</identifier><identifier>PMID: 11315006</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Biometrics ; Biometry ; Cancer ; Colorectal Neoplasms - epidemiology ; Delta method ; Epidemiology ; Epidemiology - statistics &amp; numerical data ; Estimation methods ; Geographical variation ; Humans ; Likelihood Functions ; Lymphoma, Non-Hodgkin - epidemiology ; Male ; Maximum likelihood ; Maximum likelihood estimation ; Melanoma - epidemiology ; Method-of-moments ; Models, Statistical ; Mortality ; Neoplasms - epidemiology ; Non Hodgkin lymphoma ; Overdispersion ; Relative risk ; Standard deviation ; Standard error ; Standardized rates ; United States - epidemiology</subject><ispartof>Biometrics, 1999-09, Vol.55 (3), p.774-781</ispartof><rights>Copyright 1999 The International Biometric Society</rights><rights>Copyright International Biometric Society Sep 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4514-11dbbe5cf2dacbbb26ac4b73d577f91b7576baa3d8f6f43d28bfc92fd53da1703</citedby><cites>FETCH-LOGICAL-c4514-11dbbe5cf2dacbbb26ac4b73d577f91b7576baa3d8f6f43d28bfc92fd53da1703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2533603$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2533603$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11315006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pennello, Gene A.</creatorcontrib><creatorcontrib>Devesa, Susan S.</creatorcontrib><creatorcontrib>Gail, Mitchell H.</creatorcontrib><title>Using a Mixed Effects Model to Estimate Geographic Variation in Cancer Rates</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Commonly used methods for depicting geographic variation in cancer rates are based on rankings. They identify where the rates are high and low but do not indicate the magnitude of the rates nor their variability. Yet such measures of variability may be useful in suggesting which types of cancer warrant further analytic studies of localized risk factors. We consider a mixed effects model in which the logarithm of the mean Poisson rate is additive in fixed stratum effects (e.g., age effects) and in logarithms of random relative risk effects associated with geographic areas. These random effects are assumed to follow a gamma distribution with unit mean and variance 1/α, similar to Clayton and Kaldor (1987, Biometrics 43, 671-681). We present maximum likelihood and method-of-moments estimates with standard errors for inference on α-1/2, the relative risk standard deviation (RRSD). The moment estimates rely on only the first two moments of the Poisson and gamma distributions but have larger standard errors than the maximum likelihood estimates. We compare these estimates with other measures of variability. Several examples suggest that the RRSD estimates have advantages compared to other measures of variability.</description><subject>Biometrics</subject><subject>Biometry</subject><subject>Cancer</subject><subject>Colorectal Neoplasms - epidemiology</subject><subject>Delta method</subject><subject>Epidemiology</subject><subject>Epidemiology - statistics &amp; numerical data</subject><subject>Estimation methods</subject><subject>Geographical variation</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Lymphoma, Non-Hodgkin - epidemiology</subject><subject>Male</subject><subject>Maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Melanoma - epidemiology</subject><subject>Method-of-moments</subject><subject>Models, Statistical</subject><subject>Mortality</subject><subject>Neoplasms - epidemiology</subject><subject>Non Hodgkin lymphoma</subject><subject>Overdispersion</subject><subject>Relative risk</subject><subject>Standard deviation</subject><subject>Standard error</subject><subject>Standardized rates</subject><subject>United States - epidemiology</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkM1uEzEUhS0EoiHwBghZLNhN8LXH48yCBQ1pqJS0EqKQneXf4iGZCfZETd8eh4mCxApv7KvznSPfgxAGMoF83jcTQkhVsBLWE6jrOo9ClJPDEzQCXkJBSkqeotEZukAvUmryWHNCn6MLAAY8iyO0vEuhvccKr8LBWTz33pk-4VVn3Qb3HZ6nPmxV7_DCdfdR7X4Eg7-pGFQfuhaHFs9Ua1zEXzKTXqJnXm2Se3W6x-juav519rlY3i6uZx-XhSk5lAWA1dpx46lVRmtNK2VKLZjlQvgatOCi0koxO_WVL5mlU-1NTb3lzCoQhI3RuyF3F7tfe5d6uQ3JuM1Gta7bJ1nVHEDkJcfo7T9g0-1jm_8mKYVqWle0zNB0gEzsUorOy13MO8dHCUQe65aNPDYpj03KY93yT93ykK1vTvl7vXX2r_HUbwY-DMBD2LjH_w6Wl9e3q_zK_teDv0l9F89-yhmrCMtyMcgh9e5wllX8KSvBBJffbxbyZr2mBAiRn9hvuQGmHg</recordid><startdate>199909</startdate><enddate>199909</enddate><creator>Pennello, Gene A.</creator><creator>Devesa, Susan S.</creator><creator>Gail, Mitchell H.</creator><general>Blackwell Publishing Ltd</general><general>International Biometric Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>199909</creationdate><title>Using a Mixed Effects Model to Estimate Geographic Variation in Cancer Rates</title><author>Pennello, Gene A. ; Devesa, Susan S. ; Gail, Mitchell H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4514-11dbbe5cf2dacbbb26ac4b73d577f91b7576baa3d8f6f43d28bfc92fd53da1703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biometrics</topic><topic>Biometry</topic><topic>Cancer</topic><topic>Colorectal Neoplasms - epidemiology</topic><topic>Delta method</topic><topic>Epidemiology</topic><topic>Epidemiology - statistics &amp; numerical data</topic><topic>Estimation methods</topic><topic>Geographical variation</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Lymphoma, Non-Hodgkin - epidemiology</topic><topic>Male</topic><topic>Maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Melanoma - epidemiology</topic><topic>Method-of-moments</topic><topic>Models, Statistical</topic><topic>Mortality</topic><topic>Neoplasms - epidemiology</topic><topic>Non Hodgkin lymphoma</topic><topic>Overdispersion</topic><topic>Relative risk</topic><topic>Standard deviation</topic><topic>Standard error</topic><topic>Standardized rates</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pennello, Gene A.</creatorcontrib><creatorcontrib>Devesa, Susan S.</creatorcontrib><creatorcontrib>Gail, Mitchell H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pennello, Gene A.</au><au>Devesa, Susan S.</au><au>Gail, Mitchell H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using a Mixed Effects Model to Estimate Geographic Variation in Cancer Rates</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>1999-09</date><risdate>1999</risdate><volume>55</volume><issue>3</issue><spage>774</spage><epage>781</epage><pages>774-781</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Commonly used methods for depicting geographic variation in cancer rates are based on rankings. They identify where the rates are high and low but do not indicate the magnitude of the rates nor their variability. Yet such measures of variability may be useful in suggesting which types of cancer warrant further analytic studies of localized risk factors. We consider a mixed effects model in which the logarithm of the mean Poisson rate is additive in fixed stratum effects (e.g., age effects) and in logarithms of random relative risk effects associated with geographic areas. These random effects are assumed to follow a gamma distribution with unit mean and variance 1/α, similar to Clayton and Kaldor (1987, Biometrics 43, 671-681). We present maximum likelihood and method-of-moments estimates with standard errors for inference on α-1/2, the relative risk standard deviation (RRSD). The moment estimates rely on only the first two moments of the Poisson and gamma distributions but have larger standard errors than the maximum likelihood estimates. We compare these estimates with other measures of variability. Several examples suggest that the RRSD estimates have advantages compared to other measures of variability.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>11315006</pmid><doi>10.1111/j.0006-341X.1999.00774.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 1999-09, Vol.55 (3), p.774-781
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_69511711
source MEDLINE; JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Biometrics
Biometry
Cancer
Colorectal Neoplasms - epidemiology
Delta method
Epidemiology
Epidemiology - statistics & numerical data
Estimation methods
Geographical variation
Humans
Likelihood Functions
Lymphoma, Non-Hodgkin - epidemiology
Male
Maximum likelihood
Maximum likelihood estimation
Melanoma - epidemiology
Method-of-moments
Models, Statistical
Mortality
Neoplasms - epidemiology
Non Hodgkin lymphoma
Overdispersion
Relative risk
Standard deviation
Standard error
Standardized rates
United States - epidemiology
title Using a Mixed Effects Model to Estimate Geographic Variation in Cancer Rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20a%20Mixed%20Effects%20Model%20to%20Estimate%20Geographic%20Variation%20in%20Cancer%20Rates&rft.jtitle=Biometrics&rft.au=Pennello,%20Gene%20A.&rft.date=1999-09&rft.volume=55&rft.issue=3&rft.spage=774&rft.epage=781&rft.pages=774-781&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.0006-341X.1999.00774.x&rft_dat=%3Cjstor_proqu%3E2533603%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221689624&rft_id=info:pmid/11315006&rft_jstor_id=2533603&rfr_iscdi=true