Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy
We demonstrate the application of molecular rotational spectroscopy to measure the conformation isomerization rate of vibrationally excited pent-1-en-4-yne (pentenyne). The rotational spectra of single quantum states of pentenyne are acquired by using a combination of IR-Fourier transform microwave...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-09, Vol.105 (35), p.12696-12700 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12700 |
---|---|
container_issue | 35 |
container_start_page | 12696 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Dian, Brian C Brown, Gordon G Douglass, Kevin O Rees, Frances S Johns, James E Nair, Pradeep Suenram, Richard D Pate, Brooks H |
description | We demonstrate the application of molecular rotational spectroscopy to measure the conformation isomerization rate of vibrationally excited pent-1-en-4-yne (pentenyne). The rotational spectra of single quantum states of pentenyne are acquired by using a combination of IR-Fourier transform microwave double-resonance spectroscopy and high-resolution, single-photon IR spectroscopy. The quantum states probed in these experiments have energy eigenvalues of [almost equal to]3,330 cm⁻¹ and lie above the barrier to conformational isomerization. At this energy, the presence of intramolecular vibrational energy redistribution (IVR) is indicated through the extensive local perturbations found in the high-resolution rotation-vibration spectrum of the acetylenic C-H stretch normal-mode fundamental. The fact that the IVR process produces isomerization is deduced through a qualitatively different appearance of the excited-state rotational spectra compared with the pure rotational spectra of pentenyne. The rotational spectra of the vibrationally excited molecular eigenstates display coalescence between the characteristic rotational frequencies of the stable cis and skew conformations of the molecule. This coalescence is observed for quantum states prepared from laser excitation originating in the ground vibrational state of either of the two stable conformers. Experimental isomerization rates are extracted by using a three-state Bloch model of the dynamic rotational spectra that includes the effects of chemical exchange between the stable conformations. The time scale for the conformational isomerization rate of pentenyne at total energy of 3,330 cm⁻¹ is [almost equal to]25 ps and is 50 times slower than the microcanonical isomerization rate predicted by the statistical Rice-Ramsperger-Kassel-Marcus theory. |
doi_str_mv | 10.1073/pnas.0800520105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69503065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25463928</jstor_id><sourcerecordid>25463928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3415-666299264742e23f8f578eeffe039d687c6bcd4770bab0e88396990338d960793</originalsourceid><addsrcrecordid>eNqFkT2P1DAQhiME4paDmgpwhYRE7sZ2_NUgoRVf0kkUcLXlTSZ7PhI72FkgdLT8I0THT-GXkGWXW6ioRqP3mXdm9BbFXQonFBQ_HYLLJ6ABBAMK4lqxoGBoKSsD14sFAFOlrlh1VNzK-RIAjNBwsziiWiptKCyKr8sY2ph6N_oYXEd8jj0m__l3T975gKOvM4ktGTCMJS0xlFU5BSQf_XhB-GPOgdT9zy_ff3zbUj6MmLZGGDCtJ9Kjy5uEDVlNpJmC631NUhz_rMsD1mOKuY7DdLu40bou4519PS7Onz97u3xZnr1-8Wr59KyseUVFKaVkxjBZqYoh461uhdKIbYvATSO1quWqbiqlYOVWgFpzI40BznVjJCjDj4snO99hs-qxqee_kuvskHzv0mSj8_ZfJfgLu44fLBPMgFKzwcO9QYrvN5hH2_tcY9e5gHGTrTQCOEgxg6c7sJ5fzAnbqyUU7DY_u83PHvKbJ-7_fduB3wc2A2QPbCcPdsJyYSmTRs7Io_8gtt103Yifxpm9t2Mv8xjTFcxEJblhetYf7PTWRevWyWd7_mY-lQMVXHCp-C99O8XI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69503065</pqid></control><display><type>article</type><title>Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy</title><source>PubMed Central(OpenAccess)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Dian, Brian C ; Brown, Gordon G ; Douglass, Kevin O ; Rees, Frances S ; Johns, James E ; Nair, Pradeep ; Suenram, Richard D ; Pate, Brooks H</creator><creatorcontrib>Dian, Brian C ; Brown, Gordon G ; Douglass, Kevin O ; Rees, Frances S ; Johns, James E ; Nair, Pradeep ; Suenram, Richard D ; Pate, Brooks H</creatorcontrib><description>We demonstrate the application of molecular rotational spectroscopy to measure the conformation isomerization rate of vibrationally excited pent-1-en-4-yne (pentenyne). The rotational spectra of single quantum states of pentenyne are acquired by using a combination of IR-Fourier transform microwave double-resonance spectroscopy and high-resolution, single-photon IR spectroscopy. The quantum states probed in these experiments have energy eigenvalues of [almost equal to]3,330 cm⁻¹ and lie above the barrier to conformational isomerization. At this energy, the presence of intramolecular vibrational energy redistribution (IVR) is indicated through the extensive local perturbations found in the high-resolution rotation-vibration spectrum of the acetylenic C-H stretch normal-mode fundamental. The fact that the IVR process produces isomerization is deduced through a qualitatively different appearance of the excited-state rotational spectra compared with the pure rotational spectra of pentenyne. The rotational spectra of the vibrationally excited molecular eigenstates display coalescence between the characteristic rotational frequencies of the stable cis and skew conformations of the molecule. This coalescence is observed for quantum states prepared from laser excitation originating in the ground vibrational state of either of the two stable conformers. Experimental isomerization rates are extracted by using a three-state Bloch model of the dynamic rotational spectra that includes the effects of chemical exchange between the stable conformations. The time scale for the conformational isomerization rate of pentenyne at total energy of 3,330 cm⁻¹ is [almost equal to]25 ps and is 50 times slower than the microcanonical isomerization rate predicted by the statistical Rice-Ramsperger-Kassel-Marcus theory.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0800520105</identifier><identifier>PMID: 18678910</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Chemical Dynamics Special Feature ; Infrared radiation ; Isomerization ; Microwave spectrometers ; Molecular rotation ; Molecules ; Physical Sciences ; Quantum states ; Reaction kinetics ; Rotation ; Rotational spectra ; Rotational states</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (35), p.12696-12700</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3415-666299264742e23f8f578eeffe039d687c6bcd4770bab0e88396990338d960793</citedby><cites>FETCH-LOGICAL-c3415-666299264742e23f8f578eeffe039d687c6bcd4770bab0e88396990338d960793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/35.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25463928$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25463928$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18678910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dian, Brian C</creatorcontrib><creatorcontrib>Brown, Gordon G</creatorcontrib><creatorcontrib>Douglass, Kevin O</creatorcontrib><creatorcontrib>Rees, Frances S</creatorcontrib><creatorcontrib>Johns, James E</creatorcontrib><creatorcontrib>Nair, Pradeep</creatorcontrib><creatorcontrib>Suenram, Richard D</creatorcontrib><creatorcontrib>Pate, Brooks H</creatorcontrib><title>Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We demonstrate the application of molecular rotational spectroscopy to measure the conformation isomerization rate of vibrationally excited pent-1-en-4-yne (pentenyne). The rotational spectra of single quantum states of pentenyne are acquired by using a combination of IR-Fourier transform microwave double-resonance spectroscopy and high-resolution, single-photon IR spectroscopy. The quantum states probed in these experiments have energy eigenvalues of [almost equal to]3,330 cm⁻¹ and lie above the barrier to conformational isomerization. At this energy, the presence of intramolecular vibrational energy redistribution (IVR) is indicated through the extensive local perturbations found in the high-resolution rotation-vibration spectrum of the acetylenic C-H stretch normal-mode fundamental. The fact that the IVR process produces isomerization is deduced through a qualitatively different appearance of the excited-state rotational spectra compared with the pure rotational spectra of pentenyne. The rotational spectra of the vibrationally excited molecular eigenstates display coalescence between the characteristic rotational frequencies of the stable cis and skew conformations of the molecule. This coalescence is observed for quantum states prepared from laser excitation originating in the ground vibrational state of either of the two stable conformers. Experimental isomerization rates are extracted by using a three-state Bloch model of the dynamic rotational spectra that includes the effects of chemical exchange between the stable conformations. The time scale for the conformational isomerization rate of pentenyne at total energy of 3,330 cm⁻¹ is [almost equal to]25 ps and is 50 times slower than the microcanonical isomerization rate predicted by the statistical Rice-Ramsperger-Kassel-Marcus theory.</description><subject>Chemical Dynamics Special Feature</subject><subject>Infrared radiation</subject><subject>Isomerization</subject><subject>Microwave spectrometers</subject><subject>Molecular rotation</subject><subject>Molecules</subject><subject>Physical Sciences</subject><subject>Quantum states</subject><subject>Reaction kinetics</subject><subject>Rotation</subject><subject>Rotational spectra</subject><subject>Rotational states</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkT2P1DAQhiME4paDmgpwhYRE7sZ2_NUgoRVf0kkUcLXlTSZ7PhI72FkgdLT8I0THT-GXkGWXW6ioRqP3mXdm9BbFXQonFBQ_HYLLJ6ABBAMK4lqxoGBoKSsD14sFAFOlrlh1VNzK-RIAjNBwsziiWiptKCyKr8sY2ph6N_oYXEd8jj0m__l3T975gKOvM4ktGTCMJS0xlFU5BSQf_XhB-GPOgdT9zy_ff3zbUj6MmLZGGDCtJ9Kjy5uEDVlNpJmC631NUhz_rMsD1mOKuY7DdLu40bou4519PS7Onz97u3xZnr1-8Wr59KyseUVFKaVkxjBZqYoh461uhdKIbYvATSO1quWqbiqlYOVWgFpzI40BznVjJCjDj4snO99hs-qxqee_kuvskHzv0mSj8_ZfJfgLu44fLBPMgFKzwcO9QYrvN5hH2_tcY9e5gHGTrTQCOEgxg6c7sJ5fzAnbqyUU7DY_u83PHvKbJ-7_fduB3wc2A2QPbCcPdsJyYSmTRs7Io_8gtt103Yifxpm9t2Mv8xjTFcxEJblhetYf7PTWRevWyWd7_mY-lQMVXHCp-C99O8XI</recordid><startdate>20080902</startdate><enddate>20080902</enddate><creator>Dian, Brian C</creator><creator>Brown, Gordon G</creator><creator>Douglass, Kevin O</creator><creator>Rees, Frances S</creator><creator>Johns, James E</creator><creator>Nair, Pradeep</creator><creator>Suenram, Richard D</creator><creator>Pate, Brooks H</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080902</creationdate><title>Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy</title><author>Dian, Brian C ; Brown, Gordon G ; Douglass, Kevin O ; Rees, Frances S ; Johns, James E ; Nair, Pradeep ; Suenram, Richard D ; Pate, Brooks H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3415-666299264742e23f8f578eeffe039d687c6bcd4770bab0e88396990338d960793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemical Dynamics Special Feature</topic><topic>Infrared radiation</topic><topic>Isomerization</topic><topic>Microwave spectrometers</topic><topic>Molecular rotation</topic><topic>Molecules</topic><topic>Physical Sciences</topic><topic>Quantum states</topic><topic>Reaction kinetics</topic><topic>Rotation</topic><topic>Rotational spectra</topic><topic>Rotational states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dian, Brian C</creatorcontrib><creatorcontrib>Brown, Gordon G</creatorcontrib><creatorcontrib>Douglass, Kevin O</creatorcontrib><creatorcontrib>Rees, Frances S</creatorcontrib><creatorcontrib>Johns, James E</creatorcontrib><creatorcontrib>Nair, Pradeep</creatorcontrib><creatorcontrib>Suenram, Richard D</creatorcontrib><creatorcontrib>Pate, Brooks H</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dian, Brian C</au><au>Brown, Gordon G</au><au>Douglass, Kevin O</au><au>Rees, Frances S</au><au>Johns, James E</au><au>Nair, Pradeep</au><au>Suenram, Richard D</au><au>Pate, Brooks H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-09-02</date><risdate>2008</risdate><volume>105</volume><issue>35</issue><spage>12696</spage><epage>12700</epage><pages>12696-12700</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We demonstrate the application of molecular rotational spectroscopy to measure the conformation isomerization rate of vibrationally excited pent-1-en-4-yne (pentenyne). The rotational spectra of single quantum states of pentenyne are acquired by using a combination of IR-Fourier transform microwave double-resonance spectroscopy and high-resolution, single-photon IR spectroscopy. The quantum states probed in these experiments have energy eigenvalues of [almost equal to]3,330 cm⁻¹ and lie above the barrier to conformational isomerization. At this energy, the presence of intramolecular vibrational energy redistribution (IVR) is indicated through the extensive local perturbations found in the high-resolution rotation-vibration spectrum of the acetylenic C-H stretch normal-mode fundamental. The fact that the IVR process produces isomerization is deduced through a qualitatively different appearance of the excited-state rotational spectra compared with the pure rotational spectra of pentenyne. The rotational spectra of the vibrationally excited molecular eigenstates display coalescence between the characteristic rotational frequencies of the stable cis and skew conformations of the molecule. This coalescence is observed for quantum states prepared from laser excitation originating in the ground vibrational state of either of the two stable conformers. Experimental isomerization rates are extracted by using a three-state Bloch model of the dynamic rotational spectra that includes the effects of chemical exchange between the stable conformations. The time scale for the conformational isomerization rate of pentenyne at total energy of 3,330 cm⁻¹ is [almost equal to]25 ps and is 50 times slower than the microcanonical isomerization rate predicted by the statistical Rice-Ramsperger-Kassel-Marcus theory.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18678910</pmid><doi>10.1073/pnas.0800520105</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (35), p.12696-12700 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_69503065 |
source | PubMed Central(OpenAccess); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Chemical Dynamics Special Feature Infrared radiation Isomerization Microwave spectrometers Molecular rotation Molecules Physical Sciences Quantum states Reaction kinetics Rotation Rotational spectra Rotational states |
title | Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20isomerization%20kinetics%20of%20pent-1-en-4-yne%20with%203,330%20cm%E2%81%BB%C2%B9%20of%20internal%20energy%20measured%20by%20dynamic%20rotational%20spectroscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dian,%20Brian%20C&rft.date=2008-09-02&rft.volume=105&rft.issue=35&rft.spage=12696&rft.epage=12700&rft.pages=12696-12700&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0800520105&rft_dat=%3Cjstor_proqu%3E25463928%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69503065&rft_id=info:pmid/18678910&rft_jstor_id=25463928&rfr_iscdi=true |