Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy

We demonstrate the application of molecular rotational spectroscopy to measure the conformation isomerization rate of vibrationally excited pent-1-en-4-yne (pentenyne). The rotational spectra of single quantum states of pentenyne are acquired by using a combination of IR-Fourier transform microwave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-09, Vol.105 (35), p.12696-12700
Hauptverfasser: Dian, Brian C, Brown, Gordon G, Douglass, Kevin O, Rees, Frances S, Johns, James E, Nair, Pradeep, Suenram, Richard D, Pate, Brooks H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12700
container_issue 35
container_start_page 12696
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Dian, Brian C
Brown, Gordon G
Douglass, Kevin O
Rees, Frances S
Johns, James E
Nair, Pradeep
Suenram, Richard D
Pate, Brooks H
description We demonstrate the application of molecular rotational spectroscopy to measure the conformation isomerization rate of vibrationally excited pent-1-en-4-yne (pentenyne). The rotational spectra of single quantum states of pentenyne are acquired by using a combination of IR-Fourier transform microwave double-resonance spectroscopy and high-resolution, single-photon IR spectroscopy. The quantum states probed in these experiments have energy eigenvalues of [almost equal to]3,330 cm⁻¹ and lie above the barrier to conformational isomerization. At this energy, the presence of intramolecular vibrational energy redistribution (IVR) is indicated through the extensive local perturbations found in the high-resolution rotation-vibration spectrum of the acetylenic C-H stretch normal-mode fundamental. The fact that the IVR process produces isomerization is deduced through a qualitatively different appearance of the excited-state rotational spectra compared with the pure rotational spectra of pentenyne. The rotational spectra of the vibrationally excited molecular eigenstates display coalescence between the characteristic rotational frequencies of the stable cis and skew conformations of the molecule. This coalescence is observed for quantum states prepared from laser excitation originating in the ground vibrational state of either of the two stable conformers. Experimental isomerization rates are extracted by using a three-state Bloch model of the dynamic rotational spectra that includes the effects of chemical exchange between the stable conformations. The time scale for the conformational isomerization rate of pentenyne at total energy of 3,330 cm⁻¹ is [almost equal to]25 ps and is 50 times slower than the microcanonical isomerization rate predicted by the statistical Rice-Ramsperger-Kassel-Marcus theory.
doi_str_mv 10.1073/pnas.0800520105
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69503065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25463928</jstor_id><sourcerecordid>25463928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3415-666299264742e23f8f578eeffe039d687c6bcd4770bab0e88396990338d960793</originalsourceid><addsrcrecordid>eNqFkT2P1DAQhiME4paDmgpwhYRE7sZ2_NUgoRVf0kkUcLXlTSZ7PhI72FkgdLT8I0THT-GXkGWXW6ioRqP3mXdm9BbFXQonFBQ_HYLLJ6ABBAMK4lqxoGBoKSsD14sFAFOlrlh1VNzK-RIAjNBwsziiWiptKCyKr8sY2ph6N_oYXEd8jj0m__l3T975gKOvM4ktGTCMJS0xlFU5BSQf_XhB-GPOgdT9zy_ff3zbUj6MmLZGGDCtJ9Kjy5uEDVlNpJmC631NUhz_rMsD1mOKuY7DdLu40bou4519PS7Onz97u3xZnr1-8Wr59KyseUVFKaVkxjBZqYoh461uhdKIbYvATSO1quWqbiqlYOVWgFpzI40BznVjJCjDj4snO99hs-qxqee_kuvskHzv0mSj8_ZfJfgLu44fLBPMgFKzwcO9QYrvN5hH2_tcY9e5gHGTrTQCOEgxg6c7sJ5fzAnbqyUU7DY_u83PHvKbJ-7_fduB3wc2A2QPbCcPdsJyYSmTRs7Io_8gtt103Yifxpm9t2Mv8xjTFcxEJblhetYf7PTWRevWyWd7_mY-lQMVXHCp-C99O8XI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69503065</pqid></control><display><type>article</type><title>Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy</title><source>PubMed Central(OpenAccess)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Dian, Brian C ; Brown, Gordon G ; Douglass, Kevin O ; Rees, Frances S ; Johns, James E ; Nair, Pradeep ; Suenram, Richard D ; Pate, Brooks H</creator><creatorcontrib>Dian, Brian C ; Brown, Gordon G ; Douglass, Kevin O ; Rees, Frances S ; Johns, James E ; Nair, Pradeep ; Suenram, Richard D ; Pate, Brooks H</creatorcontrib><description>We demonstrate the application of molecular rotational spectroscopy to measure the conformation isomerization rate of vibrationally excited pent-1-en-4-yne (pentenyne). The rotational spectra of single quantum states of pentenyne are acquired by using a combination of IR-Fourier transform microwave double-resonance spectroscopy and high-resolution, single-photon IR spectroscopy. The quantum states probed in these experiments have energy eigenvalues of [almost equal to]3,330 cm⁻¹ and lie above the barrier to conformational isomerization. At this energy, the presence of intramolecular vibrational energy redistribution (IVR) is indicated through the extensive local perturbations found in the high-resolution rotation-vibration spectrum of the acetylenic C-H stretch normal-mode fundamental. The fact that the IVR process produces isomerization is deduced through a qualitatively different appearance of the excited-state rotational spectra compared with the pure rotational spectra of pentenyne. The rotational spectra of the vibrationally excited molecular eigenstates display coalescence between the characteristic rotational frequencies of the stable cis and skew conformations of the molecule. This coalescence is observed for quantum states prepared from laser excitation originating in the ground vibrational state of either of the two stable conformers. Experimental isomerization rates are extracted by using a three-state Bloch model of the dynamic rotational spectra that includes the effects of chemical exchange between the stable conformations. The time scale for the conformational isomerization rate of pentenyne at total energy of 3,330 cm⁻¹ is [almost equal to]25 ps and is 50 times slower than the microcanonical isomerization rate predicted by the statistical Rice-Ramsperger-Kassel-Marcus theory.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0800520105</identifier><identifier>PMID: 18678910</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Chemical Dynamics Special Feature ; Infrared radiation ; Isomerization ; Microwave spectrometers ; Molecular rotation ; Molecules ; Physical Sciences ; Quantum states ; Reaction kinetics ; Rotation ; Rotational spectra ; Rotational states</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (35), p.12696-12700</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3415-666299264742e23f8f578eeffe039d687c6bcd4770bab0e88396990338d960793</citedby><cites>FETCH-LOGICAL-c3415-666299264742e23f8f578eeffe039d687c6bcd4770bab0e88396990338d960793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/35.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25463928$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25463928$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18678910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dian, Brian C</creatorcontrib><creatorcontrib>Brown, Gordon G</creatorcontrib><creatorcontrib>Douglass, Kevin O</creatorcontrib><creatorcontrib>Rees, Frances S</creatorcontrib><creatorcontrib>Johns, James E</creatorcontrib><creatorcontrib>Nair, Pradeep</creatorcontrib><creatorcontrib>Suenram, Richard D</creatorcontrib><creatorcontrib>Pate, Brooks H</creatorcontrib><title>Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We demonstrate the application of molecular rotational spectroscopy to measure the conformation isomerization rate of vibrationally excited pent-1-en-4-yne (pentenyne). The rotational spectra of single quantum states of pentenyne are acquired by using a combination of IR-Fourier transform microwave double-resonance spectroscopy and high-resolution, single-photon IR spectroscopy. The quantum states probed in these experiments have energy eigenvalues of [almost equal to]3,330 cm⁻¹ and lie above the barrier to conformational isomerization. At this energy, the presence of intramolecular vibrational energy redistribution (IVR) is indicated through the extensive local perturbations found in the high-resolution rotation-vibration spectrum of the acetylenic C-H stretch normal-mode fundamental. The fact that the IVR process produces isomerization is deduced through a qualitatively different appearance of the excited-state rotational spectra compared with the pure rotational spectra of pentenyne. The rotational spectra of the vibrationally excited molecular eigenstates display coalescence between the characteristic rotational frequencies of the stable cis and skew conformations of the molecule. This coalescence is observed for quantum states prepared from laser excitation originating in the ground vibrational state of either of the two stable conformers. Experimental isomerization rates are extracted by using a three-state Bloch model of the dynamic rotational spectra that includes the effects of chemical exchange between the stable conformations. The time scale for the conformational isomerization rate of pentenyne at total energy of 3,330 cm⁻¹ is [almost equal to]25 ps and is 50 times slower than the microcanonical isomerization rate predicted by the statistical Rice-Ramsperger-Kassel-Marcus theory.</description><subject>Chemical Dynamics Special Feature</subject><subject>Infrared radiation</subject><subject>Isomerization</subject><subject>Microwave spectrometers</subject><subject>Molecular rotation</subject><subject>Molecules</subject><subject>Physical Sciences</subject><subject>Quantum states</subject><subject>Reaction kinetics</subject><subject>Rotation</subject><subject>Rotational spectra</subject><subject>Rotational states</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkT2P1DAQhiME4paDmgpwhYRE7sZ2_NUgoRVf0kkUcLXlTSZ7PhI72FkgdLT8I0THT-GXkGWXW6ioRqP3mXdm9BbFXQonFBQ_HYLLJ6ABBAMK4lqxoGBoKSsD14sFAFOlrlh1VNzK-RIAjNBwsziiWiptKCyKr8sY2ph6N_oYXEd8jj0m__l3T975gKOvM4ktGTCMJS0xlFU5BSQf_XhB-GPOgdT9zy_ff3zbUj6MmLZGGDCtJ9Kjy5uEDVlNpJmC631NUhz_rMsD1mOKuY7DdLu40bou4519PS7Onz97u3xZnr1-8Wr59KyseUVFKaVkxjBZqYoh461uhdKIbYvATSO1quWqbiqlYOVWgFpzI40BznVjJCjDj4snO99hs-qxqee_kuvskHzv0mSj8_ZfJfgLu44fLBPMgFKzwcO9QYrvN5hH2_tcY9e5gHGTrTQCOEgxg6c7sJ5fzAnbqyUU7DY_u83PHvKbJ-7_fduB3wc2A2QPbCcPdsJyYSmTRs7Io_8gtt103Yifxpm9t2Mv8xjTFcxEJblhetYf7PTWRevWyWd7_mY-lQMVXHCp-C99O8XI</recordid><startdate>20080902</startdate><enddate>20080902</enddate><creator>Dian, Brian C</creator><creator>Brown, Gordon G</creator><creator>Douglass, Kevin O</creator><creator>Rees, Frances S</creator><creator>Johns, James E</creator><creator>Nair, Pradeep</creator><creator>Suenram, Richard D</creator><creator>Pate, Brooks H</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080902</creationdate><title>Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy</title><author>Dian, Brian C ; Brown, Gordon G ; Douglass, Kevin O ; Rees, Frances S ; Johns, James E ; Nair, Pradeep ; Suenram, Richard D ; Pate, Brooks H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3415-666299264742e23f8f578eeffe039d687c6bcd4770bab0e88396990338d960793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemical Dynamics Special Feature</topic><topic>Infrared radiation</topic><topic>Isomerization</topic><topic>Microwave spectrometers</topic><topic>Molecular rotation</topic><topic>Molecules</topic><topic>Physical Sciences</topic><topic>Quantum states</topic><topic>Reaction kinetics</topic><topic>Rotation</topic><topic>Rotational spectra</topic><topic>Rotational states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dian, Brian C</creatorcontrib><creatorcontrib>Brown, Gordon G</creatorcontrib><creatorcontrib>Douglass, Kevin O</creatorcontrib><creatorcontrib>Rees, Frances S</creatorcontrib><creatorcontrib>Johns, James E</creatorcontrib><creatorcontrib>Nair, Pradeep</creatorcontrib><creatorcontrib>Suenram, Richard D</creatorcontrib><creatorcontrib>Pate, Brooks H</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dian, Brian C</au><au>Brown, Gordon G</au><au>Douglass, Kevin O</au><au>Rees, Frances S</au><au>Johns, James E</au><au>Nair, Pradeep</au><au>Suenram, Richard D</au><au>Pate, Brooks H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-09-02</date><risdate>2008</risdate><volume>105</volume><issue>35</issue><spage>12696</spage><epage>12700</epage><pages>12696-12700</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We demonstrate the application of molecular rotational spectroscopy to measure the conformation isomerization rate of vibrationally excited pent-1-en-4-yne (pentenyne). The rotational spectra of single quantum states of pentenyne are acquired by using a combination of IR-Fourier transform microwave double-resonance spectroscopy and high-resolution, single-photon IR spectroscopy. The quantum states probed in these experiments have energy eigenvalues of [almost equal to]3,330 cm⁻¹ and lie above the barrier to conformational isomerization. At this energy, the presence of intramolecular vibrational energy redistribution (IVR) is indicated through the extensive local perturbations found in the high-resolution rotation-vibration spectrum of the acetylenic C-H stretch normal-mode fundamental. The fact that the IVR process produces isomerization is deduced through a qualitatively different appearance of the excited-state rotational spectra compared with the pure rotational spectra of pentenyne. The rotational spectra of the vibrationally excited molecular eigenstates display coalescence between the characteristic rotational frequencies of the stable cis and skew conformations of the molecule. This coalescence is observed for quantum states prepared from laser excitation originating in the ground vibrational state of either of the two stable conformers. Experimental isomerization rates are extracted by using a three-state Bloch model of the dynamic rotational spectra that includes the effects of chemical exchange between the stable conformations. The time scale for the conformational isomerization rate of pentenyne at total energy of 3,330 cm⁻¹ is [almost equal to]25 ps and is 50 times slower than the microcanonical isomerization rate predicted by the statistical Rice-Ramsperger-Kassel-Marcus theory.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18678910</pmid><doi>10.1073/pnas.0800520105</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (35), p.12696-12700
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_69503065
source PubMed Central(OpenAccess); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Chemical Dynamics Special Feature
Infrared radiation
Isomerization
Microwave spectrometers
Molecular rotation
Molecules
Physical Sciences
Quantum states
Reaction kinetics
Rotation
Rotational spectra
Rotational states
title Conformational isomerization kinetics of pent-1-en-4-yne with 3,330 cm⁻¹ of internal energy measured by dynamic rotational spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20isomerization%20kinetics%20of%20pent-1-en-4-yne%20with%203,330%20cm%E2%81%BB%C2%B9%20of%20internal%20energy%20measured%20by%20dynamic%20rotational%20spectroscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dian,%20Brian%20C&rft.date=2008-09-02&rft.volume=105&rft.issue=35&rft.spage=12696&rft.epage=12700&rft.pages=12696-12700&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0800520105&rft_dat=%3Cjstor_proqu%3E25463928%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69503065&rft_id=info:pmid/18678910&rft_jstor_id=25463928&rfr_iscdi=true