Down-regulated expression of plant-specific glycoepitopes in alfalfa

Compared with other plant expression systems used for pharmaceutical protein production, alfalfa offers the advantage of very homogeneous N-glycosylation. Therefore, this plant was selected for further attempts at glycoengineering. Two main approaches were developed in order to humanize N-glycosylat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2008-09, Vol.6 (7), p.702-721
Hauptverfasser: Sourrouille, Christophe, Marquet-Blouin, Estelle, D'Aoust, Marc-André, Kiefer-Meyer, Marie-Christine, Seveno, Martial, Pagny-Salehabadi, Sophie, Bardor, Muriel, Durambur, Gaelle, Lerouge, Patrice, Vezina, Louis, Gomord, Véronique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 721
container_issue 7
container_start_page 702
container_title Plant biotechnology journal
container_volume 6
creator Sourrouille, Christophe
Marquet-Blouin, Estelle
D'Aoust, Marc-André
Kiefer-Meyer, Marie-Christine
Seveno, Martial
Pagny-Salehabadi, Sophie
Bardor, Muriel
Durambur, Gaelle
Lerouge, Patrice
Vezina, Louis
Gomord, Véronique
description Compared with other plant expression systems used for pharmaceutical protein production, alfalfa offers the advantage of very homogeneous N-glycosylation. Therefore, this plant was selected for further attempts at glycoengineering. Two main approaches were developed in order to humanize N-glycosylation in alfalfa. The first was a knock-down of two plant-specific N-glycan maturation enzymes, β1,2-xylosyltransferase and α1,3-fucosyltransferases, using sense, antisense and RNA interference strategies. In a second approach, with the ultimate goal of rebuilding the whole human sialylation pathway, human β1,4-galactosyltransferase was expressed in alfalfa in a native form or in fusion with a targeting domain from N-acetylglucosaminyltransferase I, a glycosyltransferase located in the early Golgi apparatus in Nicotiana tabacum. Both knock-down and knock-in strategies strongly, but not completely, inhibited the biosynthesis of α1,3-fucose- and β1,2-xylose-containing glycoepitopes in transgenic alfalfa. However, recombinant human β1,4-galactosyltransferase activity in transgenic alfalfa completely prevented the accumulation of the Lewis a glycoepitope on complex N-glycans.
doi_str_mv 10.1111/j.1467-7652.2008.00353.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_69497796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69497796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5743-213c946185dd2ec3dee845896e03f55effa697c9093b20fa45a3cd177f2349da3</originalsourceid><addsrcrecordid>eNqNkF1v0zAUhiMEYmPwFyA3cJfgb8cSN6xjY2IaFTDt0vKc48oljYOdau2_n0Oqcotl6RzJz2sfP0VRYlTjvD6ua8yErKTgpCYINTVClNN696w4PR48P_aMnRSvUlojRLDg4mVxghumGorRaXFxER77KsJq25kR2hJ2Q4SUfOjL4MqhM_1YpQGsd96Wq25vAwx-DAOk0vel6dy0Xxcvck3w5lDPirvLL78WX6ub71fXi883leWS0YpgahUTuOFtS8DSFqBhvFECEHWcg3NGKGkVUvSBIGcYN9S2WEpHKFOtoWfFh_neIYY_W0ij3vhkoctTQtgmLRRTUiqRwWYGbQwpRXB6iH5j4l5jpCeDeq0nOXoSpSeD-q9BvcvRt4c3tg8baP8FD8oy8P4AmGTz76PprU9HjiCBBUM0c59m7tF3sP_vAfTy_Do3OV7NcZ9G2B3jJv7WQlLJ9f3tlVaL5bfbH_heLzP_buadCdqsYh7p7idBmCKkCCFI0ifHN6Q3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69497796</pqid></control><display><type>article</type><title>Down-regulated expression of plant-specific glycoepitopes in alfalfa</title><source>Wiley Online Library Open Access</source><creator>Sourrouille, Christophe ; Marquet-Blouin, Estelle ; D'Aoust, Marc-André ; Kiefer-Meyer, Marie-Christine ; Seveno, Martial ; Pagny-Salehabadi, Sophie ; Bardor, Muriel ; Durambur, Gaelle ; Lerouge, Patrice ; Vezina, Louis ; Gomord, Véronique</creator><creatorcontrib>Sourrouille, Christophe ; Marquet-Blouin, Estelle ; D'Aoust, Marc-André ; Kiefer-Meyer, Marie-Christine ; Seveno, Martial ; Pagny-Salehabadi, Sophie ; Bardor, Muriel ; Durambur, Gaelle ; Lerouge, Patrice ; Vezina, Louis ; Gomord, Véronique</creatorcontrib><description>Compared with other plant expression systems used for pharmaceutical protein production, alfalfa offers the advantage of very homogeneous N-glycosylation. Therefore, this plant was selected for further attempts at glycoengineering. Two main approaches were developed in order to humanize N-glycosylation in alfalfa. The first was a knock-down of two plant-specific N-glycan maturation enzymes, β1,2-xylosyltransferase and α1,3-fucosyltransferases, using sense, antisense and RNA interference strategies. In a second approach, with the ultimate goal of rebuilding the whole human sialylation pathway, human β1,4-galactosyltransferase was expressed in alfalfa in a native form or in fusion with a targeting domain from N-acetylglucosaminyltransferase I, a glycosyltransferase located in the early Golgi apparatus in Nicotiana tabacum. Both knock-down and knock-in strategies strongly, but not completely, inhibited the biosynthesis of α1,3-fucose- and β1,2-xylose-containing glycoepitopes in transgenic alfalfa. However, recombinant human β1,4-galactosyltransferase activity in transgenic alfalfa completely prevented the accumulation of the Lewis a glycoepitope on complex N-glycans.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/j.1467-7652.2008.00353.x</identifier><identifier>PMID: 18498310</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>alfalfa ; Amino Acid Sequence ; Animals ; Biological and medical sciences ; Biotechnology ; Cell Line ; Cloning, Molecular ; Down-Regulation ; Epitopes - genetics ; Epitopes - immunology ; Fucosyltransferases - antagonists &amp; inhibitors ; Fucosyltransferases - chemistry ; Fucosyltransferases - genetics ; Fundamental and applied biological sciences. Psychology ; Galactosyltransferases - genetics ; Galactosyltransferases - metabolism ; glycoengineering ; Glycoproteins - chemistry ; Glycoproteins - genetics ; Glycoproteins - metabolism ; Glycosylation ; glycosyltransferase ; Humans ; Lewis a epitope ; Medicago sativa - genetics ; Medicago sativa - metabolism ; Molecular Sequence Data ; N-Acetylglucosaminyltransferases - chemistry ; N-Acetylglucosaminyltransferases - genetics ; N-Acetylglucosaminyltransferases - metabolism ; N-glycosylation ; Nicotiana - genetics ; Pentosyltransferases - antagonists &amp; inhibitors ; Pentosyltransferases - chemistry ; Pentosyltransferases - genetics ; Plant Proteins - antagonists &amp; inhibitors ; Plant Proteins - genetics ; Plant Proteins - metabolism ; plant-made pharmaceutical ; Plants, Genetically Modified - metabolism ; Recombinant Fusion Proteins - metabolism ; RNA Interference ; Sequence Alignment ; Spodoptera ; Substrate Specificity</subject><ispartof>Plant biotechnology journal, 2008-09, Vol.6 (7), p.702-721</ispartof><rights>2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5743-213c946185dd2ec3dee845896e03f55effa697c9093b20fa45a3cd177f2349da3</citedby><cites>FETCH-LOGICAL-c5743-213c946185dd2ec3dee845896e03f55effa697c9093b20fa45a3cd177f2349da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-7652.2008.00353.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-7652.2008.00353.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,11561,27923,27924,45573,45574,46051,46475</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-7652.2008.00353.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20616403$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18498310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sourrouille, Christophe</creatorcontrib><creatorcontrib>Marquet-Blouin, Estelle</creatorcontrib><creatorcontrib>D'Aoust, Marc-André</creatorcontrib><creatorcontrib>Kiefer-Meyer, Marie-Christine</creatorcontrib><creatorcontrib>Seveno, Martial</creatorcontrib><creatorcontrib>Pagny-Salehabadi, Sophie</creatorcontrib><creatorcontrib>Bardor, Muriel</creatorcontrib><creatorcontrib>Durambur, Gaelle</creatorcontrib><creatorcontrib>Lerouge, Patrice</creatorcontrib><creatorcontrib>Vezina, Louis</creatorcontrib><creatorcontrib>Gomord, Véronique</creatorcontrib><title>Down-regulated expression of plant-specific glycoepitopes in alfalfa</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Compared with other plant expression systems used for pharmaceutical protein production, alfalfa offers the advantage of very homogeneous N-glycosylation. Therefore, this plant was selected for further attempts at glycoengineering. Two main approaches were developed in order to humanize N-glycosylation in alfalfa. The first was a knock-down of two plant-specific N-glycan maturation enzymes, β1,2-xylosyltransferase and α1,3-fucosyltransferases, using sense, antisense and RNA interference strategies. In a second approach, with the ultimate goal of rebuilding the whole human sialylation pathway, human β1,4-galactosyltransferase was expressed in alfalfa in a native form or in fusion with a targeting domain from N-acetylglucosaminyltransferase I, a glycosyltransferase located in the early Golgi apparatus in Nicotiana tabacum. Both knock-down and knock-in strategies strongly, but not completely, inhibited the biosynthesis of α1,3-fucose- and β1,2-xylose-containing glycoepitopes in transgenic alfalfa. However, recombinant human β1,4-galactosyltransferase activity in transgenic alfalfa completely prevented the accumulation of the Lewis a glycoepitope on complex N-glycans.</description><subject>alfalfa</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Line</subject><subject>Cloning, Molecular</subject><subject>Down-Regulation</subject><subject>Epitopes - genetics</subject><subject>Epitopes - immunology</subject><subject>Fucosyltransferases - antagonists &amp; inhibitors</subject><subject>Fucosyltransferases - chemistry</subject><subject>Fucosyltransferases - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Galactosyltransferases - genetics</subject><subject>Galactosyltransferases - metabolism</subject><subject>glycoengineering</subject><subject>Glycoproteins - chemistry</subject><subject>Glycoproteins - genetics</subject><subject>Glycoproteins - metabolism</subject><subject>Glycosylation</subject><subject>glycosyltransferase</subject><subject>Humans</subject><subject>Lewis a epitope</subject><subject>Medicago sativa - genetics</subject><subject>Medicago sativa - metabolism</subject><subject>Molecular Sequence Data</subject><subject>N-Acetylglucosaminyltransferases - chemistry</subject><subject>N-Acetylglucosaminyltransferases - genetics</subject><subject>N-Acetylglucosaminyltransferases - metabolism</subject><subject>N-glycosylation</subject><subject>Nicotiana - genetics</subject><subject>Pentosyltransferases - antagonists &amp; inhibitors</subject><subject>Pentosyltransferases - chemistry</subject><subject>Pentosyltransferases - genetics</subject><subject>Plant Proteins - antagonists &amp; inhibitors</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>plant-made pharmaceutical</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>RNA Interference</subject><subject>Sequence Alignment</subject><subject>Spodoptera</subject><subject>Substrate Specificity</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkF1v0zAUhiMEYmPwFyA3cJfgb8cSN6xjY2IaFTDt0vKc48oljYOdau2_n0Oqcotl6RzJz2sfP0VRYlTjvD6ua8yErKTgpCYINTVClNN696w4PR48P_aMnRSvUlojRLDg4mVxghumGorRaXFxER77KsJq25kR2hJ2Q4SUfOjL4MqhM_1YpQGsd96Wq25vAwx-DAOk0vel6dy0Xxcvck3w5lDPirvLL78WX6ub71fXi883leWS0YpgahUTuOFtS8DSFqBhvFECEHWcg3NGKGkVUvSBIGcYN9S2WEpHKFOtoWfFh_neIYY_W0ij3vhkoctTQtgmLRRTUiqRwWYGbQwpRXB6iH5j4l5jpCeDeq0nOXoSpSeD-q9BvcvRt4c3tg8baP8FD8oy8P4AmGTz76PprU9HjiCBBUM0c59m7tF3sP_vAfTy_Do3OV7NcZ9G2B3jJv7WQlLJ9f3tlVaL5bfbH_heLzP_buadCdqsYh7p7idBmCKkCCFI0ifHN6Q3</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Sourrouille, Christophe</creator><creator>Marquet-Blouin, Estelle</creator><creator>D'Aoust, Marc-André</creator><creator>Kiefer-Meyer, Marie-Christine</creator><creator>Seveno, Martial</creator><creator>Pagny-Salehabadi, Sophie</creator><creator>Bardor, Muriel</creator><creator>Durambur, Gaelle</creator><creator>Lerouge, Patrice</creator><creator>Vezina, Louis</creator><creator>Gomord, Véronique</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200809</creationdate><title>Down-regulated expression of plant-specific glycoepitopes in alfalfa</title><author>Sourrouille, Christophe ; Marquet-Blouin, Estelle ; D'Aoust, Marc-André ; Kiefer-Meyer, Marie-Christine ; Seveno, Martial ; Pagny-Salehabadi, Sophie ; Bardor, Muriel ; Durambur, Gaelle ; Lerouge, Patrice ; Vezina, Louis ; Gomord, Véronique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5743-213c946185dd2ec3dee845896e03f55effa697c9093b20fa45a3cd177f2349da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>alfalfa</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Line</topic><topic>Cloning, Molecular</topic><topic>Down-Regulation</topic><topic>Epitopes - genetics</topic><topic>Epitopes - immunology</topic><topic>Fucosyltransferases - antagonists &amp; inhibitors</topic><topic>Fucosyltransferases - chemistry</topic><topic>Fucosyltransferases - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Galactosyltransferases - genetics</topic><topic>Galactosyltransferases - metabolism</topic><topic>glycoengineering</topic><topic>Glycoproteins - chemistry</topic><topic>Glycoproteins - genetics</topic><topic>Glycoproteins - metabolism</topic><topic>Glycosylation</topic><topic>glycosyltransferase</topic><topic>Humans</topic><topic>Lewis a epitope</topic><topic>Medicago sativa - genetics</topic><topic>Medicago sativa - metabolism</topic><topic>Molecular Sequence Data</topic><topic>N-Acetylglucosaminyltransferases - chemistry</topic><topic>N-Acetylglucosaminyltransferases - genetics</topic><topic>N-Acetylglucosaminyltransferases - metabolism</topic><topic>N-glycosylation</topic><topic>Nicotiana - genetics</topic><topic>Pentosyltransferases - antagonists &amp; inhibitors</topic><topic>Pentosyltransferases - chemistry</topic><topic>Pentosyltransferases - genetics</topic><topic>Plant Proteins - antagonists &amp; inhibitors</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>plant-made pharmaceutical</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>RNA Interference</topic><topic>Sequence Alignment</topic><topic>Spodoptera</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sourrouille, Christophe</creatorcontrib><creatorcontrib>Marquet-Blouin, Estelle</creatorcontrib><creatorcontrib>D'Aoust, Marc-André</creatorcontrib><creatorcontrib>Kiefer-Meyer, Marie-Christine</creatorcontrib><creatorcontrib>Seveno, Martial</creatorcontrib><creatorcontrib>Pagny-Salehabadi, Sophie</creatorcontrib><creatorcontrib>Bardor, Muriel</creatorcontrib><creatorcontrib>Durambur, Gaelle</creatorcontrib><creatorcontrib>Lerouge, Patrice</creatorcontrib><creatorcontrib>Vezina, Louis</creatorcontrib><creatorcontrib>Gomord, Véronique</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sourrouille, Christophe</au><au>Marquet-Blouin, Estelle</au><au>D'Aoust, Marc-André</au><au>Kiefer-Meyer, Marie-Christine</au><au>Seveno, Martial</au><au>Pagny-Salehabadi, Sophie</au><au>Bardor, Muriel</au><au>Durambur, Gaelle</au><au>Lerouge, Patrice</au><au>Vezina, Louis</au><au>Gomord, Véronique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Down-regulated expression of plant-specific glycoepitopes in alfalfa</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2008-09</date><risdate>2008</risdate><volume>6</volume><issue>7</issue><spage>702</spage><epage>721</epage><pages>702-721</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Compared with other plant expression systems used for pharmaceutical protein production, alfalfa offers the advantage of very homogeneous N-glycosylation. Therefore, this plant was selected for further attempts at glycoengineering. Two main approaches were developed in order to humanize N-glycosylation in alfalfa. The first was a knock-down of two plant-specific N-glycan maturation enzymes, β1,2-xylosyltransferase and α1,3-fucosyltransferases, using sense, antisense and RNA interference strategies. In a second approach, with the ultimate goal of rebuilding the whole human sialylation pathway, human β1,4-galactosyltransferase was expressed in alfalfa in a native form or in fusion with a targeting domain from N-acetylglucosaminyltransferase I, a glycosyltransferase located in the early Golgi apparatus in Nicotiana tabacum. Both knock-down and knock-in strategies strongly, but not completely, inhibited the biosynthesis of α1,3-fucose- and β1,2-xylose-containing glycoepitopes in transgenic alfalfa. However, recombinant human β1,4-galactosyltransferase activity in transgenic alfalfa completely prevented the accumulation of the Lewis a glycoepitope on complex N-glycans.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>18498310</pmid><doi>10.1111/j.1467-7652.2008.00353.x</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2008-09, Vol.6 (7), p.702-721
issn 1467-7644
1467-7652
language eng
recordid cdi_proquest_miscellaneous_69497796
source Wiley Online Library Open Access
subjects alfalfa
Amino Acid Sequence
Animals
Biological and medical sciences
Biotechnology
Cell Line
Cloning, Molecular
Down-Regulation
Epitopes - genetics
Epitopes - immunology
Fucosyltransferases - antagonists & inhibitors
Fucosyltransferases - chemistry
Fucosyltransferases - genetics
Fundamental and applied biological sciences. Psychology
Galactosyltransferases - genetics
Galactosyltransferases - metabolism
glycoengineering
Glycoproteins - chemistry
Glycoproteins - genetics
Glycoproteins - metabolism
Glycosylation
glycosyltransferase
Humans
Lewis a epitope
Medicago sativa - genetics
Medicago sativa - metabolism
Molecular Sequence Data
N-Acetylglucosaminyltransferases - chemistry
N-Acetylglucosaminyltransferases - genetics
N-Acetylglucosaminyltransferases - metabolism
N-glycosylation
Nicotiana - genetics
Pentosyltransferases - antagonists & inhibitors
Pentosyltransferases - chemistry
Pentosyltransferases - genetics
Plant Proteins - antagonists & inhibitors
Plant Proteins - genetics
Plant Proteins - metabolism
plant-made pharmaceutical
Plants, Genetically Modified - metabolism
Recombinant Fusion Proteins - metabolism
RNA Interference
Sequence Alignment
Spodoptera
Substrate Specificity
title Down-regulated expression of plant-specific glycoepitopes in alfalfa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Down-regulated%20expression%20of%20plant-specific%20glycoepitopes%20in%20alfalfa&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Sourrouille,%20Christophe&rft.date=2008-09&rft.volume=6&rft.issue=7&rft.spage=702&rft.epage=721&rft.pages=702-721&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/j.1467-7652.2008.00353.x&rft_dat=%3Cproquest_24P%3E69497796%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69497796&rft_id=info:pmid/18498310&rfr_iscdi=true