Artificial neural network: border detection in echocardiography
Being non-invasive and low cost, the echocardiography has become a diagnostic technique largely applied for the determination of the left ventricle systolic and diastolic volumes, which are used indirectly to calculate the left ventricle ejection volume, the cardiac cavities muscular contraction, th...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2008-09, Vol.46 (9), p.841-848, Article 841 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 848 |
---|---|
container_issue | 9 |
container_start_page | 841 |
container_title | Medical & biological engineering & computing |
container_volume | 46 |
creator | Wu, Eduardo Jyh Herng De Andrade, Márcio Luiz Nicolosi, Denys E. Pontes, Sérgio C. |
description | Being non-invasive and low cost, the echocardiography has become a diagnostic technique largely applied for the determination of the left ventricle systolic and diastolic volumes, which are used indirectly to calculate the left ventricle ejection volume, the cardiac cavities muscular contraction, the regional ejection fraction, the myocardial thickness, and the ventricular mass, etc. However, the image is very noisy, which renders the delineation of the borders of the left ventricle very difficult. While there are many techniques image segmentation, this work chooses the artificial neural network (ANN) since it is not very sensitive to noise. In order to reduce the processing time, the operator selects the region of interest where the neural network will identify the borders. Neighborhood and gradient search techniques are then employed to link the points and the left ventricle contour is traced. The present method has been efficient in detecting the left ventricle borders echocardiography images compared to those whose borders were delineated by the specialists. For good results, it is important to choose properly the areas to be analyzed and the central points of these areas. |
doi_str_mv | 10.1007/s11517-008-0372-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69490046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36422938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-c7843a35131bef6b22cc7ac7d4eb689eba93159d2e004e15b3f41f19a00a50c13</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRbP34AV4kePAWndmvJF6kFL9A8KLnZbOZaLTN1t0E6b83tQVBkJ7mMM_7DsPD2AnCBQJklxFRYZYC5CmIjKdqh40xk5iClHKXjQElpICYj9hBjO8AHBWX-2yEueZaZ2rMrieha-rGNXaWtNSHn9F9-fBxlZQ-VBSSijpyXePbpGkTcm_e2VA1_jXYxdvyiO3VdhbpeDMP2cvtzfP0Pn18unuYTh5TJwV2qctyKaxQKLCkWpecO5dZl1WSSp0XVNpCoCoqTgCSUJWillhjYQGsAofikJ2vexfBf_YUOzNvoqPZzLbk-2h0IYshqreCQkvOC5FvBTkKDgirxrM_4LvvQzt8OzA4nEW9gnANueBjDFSbRWjmNiwNglnJMmtZZpBlVrKMGjKnm-K-nFP1m9jYGQC-BuKwal8p_F7-v_Ubzymdnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211490166</pqid></control><display><type>article</type><title>Artificial neural network: border detection in echocardiography</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Wu, Eduardo Jyh Herng ; De Andrade, Márcio Luiz ; Nicolosi, Denys E. ; Pontes, Sérgio C.</creator><creatorcontrib>Wu, Eduardo Jyh Herng ; De Andrade, Márcio Luiz ; Nicolosi, Denys E. ; Pontes, Sérgio C.</creatorcontrib><description>Being non-invasive and low cost, the echocardiography has become a diagnostic technique largely applied for the determination of the left ventricle systolic and diastolic volumes, which are used indirectly to calculate the left ventricle ejection volume, the cardiac cavities muscular contraction, the regional ejection fraction, the myocardial thickness, and the ventricular mass, etc. However, the image is very noisy, which renders the delineation of the borders of the left ventricle very difficult. While there are many techniques image segmentation, this work chooses the artificial neural network (ANN) since it is not very sensitive to noise. In order to reduce the processing time, the operator selects the region of interest where the neural network will identify the borders. Neighborhood and gradient search techniques are then employed to link the points and the left ventricle contour is traced. The present method has been efficient in detecting the left ventricle borders echocardiography images compared to those whose borders were delineated by the specialists. For good results, it is important to choose properly the areas to be analyzed and the central points of these areas.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-008-0372-5</identifier><identifier>PMID: 18626675</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Automation ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Cardiology ; Computer Applications ; Diagnostics ; Echocardiography - methods ; Ejection fraction ; Heart Ventricles - diagnostic imaging ; Human Physiology ; Humans ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Neural networks ; Neural Networks (Computer) ; Neurons ; Radiology ; Review Article ; Studies</subject><ispartof>Medical & biological engineering & computing, 2008-09, Vol.46 (9), p.841-848, Article 841</ispartof><rights>International Federation for Medical and Biological Engineering 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-c7843a35131bef6b22cc7ac7d4eb689eba93159d2e004e15b3f41f19a00a50c13</citedby><cites>FETCH-LOGICAL-c431t-c7843a35131bef6b22cc7ac7d4eb689eba93159d2e004e15b3f41f19a00a50c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-008-0372-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-008-0372-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18626675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Eduardo Jyh Herng</creatorcontrib><creatorcontrib>De Andrade, Márcio Luiz</creatorcontrib><creatorcontrib>Nicolosi, Denys E.</creatorcontrib><creatorcontrib>Pontes, Sérgio C.</creatorcontrib><title>Artificial neural network: border detection in echocardiography</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Being non-invasive and low cost, the echocardiography has become a diagnostic technique largely applied for the determination of the left ventricle systolic and diastolic volumes, which are used indirectly to calculate the left ventricle ejection volume, the cardiac cavities muscular contraction, the regional ejection fraction, the myocardial thickness, and the ventricular mass, etc. However, the image is very noisy, which renders the delineation of the borders of the left ventricle very difficult. While there are many techniques image segmentation, this work chooses the artificial neural network (ANN) since it is not very sensitive to noise. In order to reduce the processing time, the operator selects the region of interest where the neural network will identify the borders. Neighborhood and gradient search techniques are then employed to link the points and the left ventricle contour is traced. The present method has been efficient in detecting the left ventricle borders echocardiography images compared to those whose borders were delineated by the specialists. For good results, it is important to choose properly the areas to be analyzed and the central points of these areas.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Cardiology</subject><subject>Computer Applications</subject><subject>Diagnostics</subject><subject>Echocardiography - methods</subject><subject>Ejection fraction</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Radiology</subject><subject>Review Article</subject><subject>Studies</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1Lw0AQhhdRbP34AV4kePAWndmvJF6kFL9A8KLnZbOZaLTN1t0E6b83tQVBkJ7mMM_7DsPD2AnCBQJklxFRYZYC5CmIjKdqh40xk5iClHKXjQElpICYj9hBjO8AHBWX-2yEueZaZ2rMrieha-rGNXaWtNSHn9F9-fBxlZQ-VBSSijpyXePbpGkTcm_e2VA1_jXYxdvyiO3VdhbpeDMP2cvtzfP0Pn18unuYTh5TJwV2qctyKaxQKLCkWpecO5dZl1WSSp0XVNpCoCoqTgCSUJWillhjYQGsAofikJ2vexfBf_YUOzNvoqPZzLbk-2h0IYshqreCQkvOC5FvBTkKDgirxrM_4LvvQzt8OzA4nEW9gnANueBjDFSbRWjmNiwNglnJMmtZZpBlVrKMGjKnm-K-nFP1m9jYGQC-BuKwal8p_F7-v_Ubzymdnw</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Wu, Eduardo Jyh Herng</creator><creator>De Andrade, Márcio Luiz</creator><creator>Nicolosi, Denys E.</creator><creator>Pontes, Sérgio C.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20080901</creationdate><title>Artificial neural network: border detection in echocardiography</title><author>Wu, Eduardo Jyh Herng ; De Andrade, Márcio Luiz ; Nicolosi, Denys E. ; Pontes, Sérgio C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-c7843a35131bef6b22cc7ac7d4eb689eba93159d2e004e15b3f41f19a00a50c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Cardiology</topic><topic>Computer Applications</topic><topic>Diagnostics</topic><topic>Echocardiography - methods</topic><topic>Ejection fraction</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Radiology</topic><topic>Review Article</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Eduardo Jyh Herng</creatorcontrib><creatorcontrib>De Andrade, Márcio Luiz</creatorcontrib><creatorcontrib>Nicolosi, Denys E.</creatorcontrib><creatorcontrib>Pontes, Sérgio C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Eduardo Jyh Herng</au><au>De Andrade, Márcio Luiz</au><au>Nicolosi, Denys E.</au><au>Pontes, Sérgio C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network: border detection in echocardiography</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>46</volume><issue>9</issue><spage>841</spage><epage>848</epage><pages>841-848</pages><artnum>841</artnum><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Being non-invasive and low cost, the echocardiography has become a diagnostic technique largely applied for the determination of the left ventricle systolic and diastolic volumes, which are used indirectly to calculate the left ventricle ejection volume, the cardiac cavities muscular contraction, the regional ejection fraction, the myocardial thickness, and the ventricular mass, etc. However, the image is very noisy, which renders the delineation of the borders of the left ventricle very difficult. While there are many techniques image segmentation, this work chooses the artificial neural network (ANN) since it is not very sensitive to noise. In order to reduce the processing time, the operator selects the region of interest where the neural network will identify the borders. Neighborhood and gradient search techniques are then employed to link the points and the left ventricle contour is traced. The present method has been efficient in detecting the left ventricle borders echocardiography images compared to those whose borders were delineated by the specialists. For good results, it is important to choose properly the areas to be analyzed and the central points of these areas.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>18626675</pmid><doi>10.1007/s11517-008-0372-5</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2008-09, Vol.46 (9), p.841-848, Article 841 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_69490046 |
source | MEDLINE; SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Automation Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Cardiology Computer Applications Diagnostics Echocardiography - methods Ejection fraction Heart Ventricles - diagnostic imaging Human Physiology Humans Image Interpretation, Computer-Assisted - methods Imaging Neural networks Neural Networks (Computer) Neurons Radiology Review Article Studies |
title | Artificial neural network: border detection in echocardiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A01%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network:%20border%20detection%20in%20echocardiography&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Wu,%20Eduardo%20Jyh%20Herng&rft.date=2008-09-01&rft.volume=46&rft.issue=9&rft.spage=841&rft.epage=848&rft.pages=841-848&rft.artnum=841&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-008-0372-5&rft_dat=%3Cproquest_cross%3E36422938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211490166&rft_id=info:pmid/18626675&rfr_iscdi=true |