A rough morphology of the adsorbed fibronectin layer favors adhesion of neuronal cells

A range of substrates made of polystyrene (PS) and poly(methyl methacrylate)–poly(methacrylic acid) copolymer (PMMA–PMAA) containing 98 and 80% PMMA (PA98, PA80) and presenting a homogeneous or a patterned surface were used to study fibronectin adsorption and neuronal cell behavior. Fibronectin adso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2008-10, Vol.87A (1), p.116-128
Hauptverfasser: Dekeyser, C. M., Zuyderhoff, E., Giuliano, R. E., Federoff, H. J., Dupont-Gillain, Ch. C., Rouxhet, P. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 1
container_start_page 116
container_title Journal of biomedical materials research. Part A
container_volume 87A
creator Dekeyser, C. M.
Zuyderhoff, E.
Giuliano, R. E.
Federoff, H. J.
Dupont-Gillain, Ch. C.
Rouxhet, P. G.
description A range of substrates made of polystyrene (PS) and poly(methyl methacrylate)–poly(methacrylic acid) copolymer (PMMA–PMAA) containing 98 and 80% PMMA (PA98, PA80) and presenting a homogeneous or a patterned surface were used to study fibronectin adsorption and neuronal cell behavior. Fibronectin adsorption showed weak differences regarding the adsorbed amount (evaluated by XPS), but large differences in adsorbed layer morphology as observed by AFM. A fine granular morphology, with dimensions up to 8 nm height and 50–150 nm width, was observed on top of a thin adsorbed layer in the case of PS, PA98, and of a surface made of nanoscale inclusions of the latter in PS. In contrast, the layer adsorbed on PA80, which carries more ionizable groups, showed a higher roughness on the PA80 zones with differences in height up to 30 nm and characteristic lateral dimensions of 400 nm. On substrates of the former category, the cells formed large clusters, revealing poor interactions with the substrate. On PA80, the cells formed large networks with only a few small clusters. The adsorbed layer roughness, resulting from aggregation of fibronectin upon adsorption and from the substrate surface chemical composition, is responsible for neuronal cell spreading and growth. Its effect is not prevented by the presence of inclusions (< 30% of the surface) responsible for smoother areas of adsorbed fibronectin and for protrusions below 40 nm. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008
doi_str_mv 10.1002/jbm.a.31739
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69484092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69484092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3989-c62490e8f13cb7e04b620e233575fba4866cd8f1e7deeddfeb97b73ea8a7c49f3</originalsourceid><addsrcrecordid>eNqF0M9P2zAcBXBrYhod47Q78onLlM6Of8XHUjHGxODCqMTFspOv20ASF7uB9b9fSju4wcmW_HlP1kPoKyVjSkj-_c61YztmVDH9AY2oEHnGtRR7mzvXGcu13EefU7obsCQi_4T2aUEKITkboZsJjqGfL3Ab4nIRmjBf4-DxagHYVilEBxX2tYuhg3JVd7ixa4jY28cQ0yAWkOrQbRId9AOyDS6hadIX9NHbJsHh7jxAf36cXk9_ZhdXZ-fTyUVWMl3orJQ51wQKT1npFBDuZE4gZ0wo4Z3lhZRlNbyCqgCqyoPTyikGtrCq5NqzA3S87V3G8NBDWpm2Tpsf2A5Cn4zUvOBE5-9CxgXhghYD_LaFZQwpRfBmGevWxrWhxGz2NsPexprnvQd9tKvtXQvVq90NPAC6BU91A-u3usyvk9__S7Ntpk4r-PuSsfHeSMWUMLPLMyNvZozdSmk4-wed8ptL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34504518</pqid></control><display><type>article</type><title>A rough morphology of the adsorbed fibronectin layer favors adhesion of neuronal cells</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Dekeyser, C. M. ; Zuyderhoff, E. ; Giuliano, R. E. ; Federoff, H. J. ; Dupont-Gillain, Ch. C. ; Rouxhet, P. G.</creator><creatorcontrib>Dekeyser, C. M. ; Zuyderhoff, E. ; Giuliano, R. E. ; Federoff, H. J. ; Dupont-Gillain, Ch. C. ; Rouxhet, P. G.</creatorcontrib><description>A range of substrates made of polystyrene (PS) and poly(methyl methacrylate)–poly(methacrylic acid) copolymer (PMMA–PMAA) containing 98 and 80% PMMA (PA98, PA80) and presenting a homogeneous or a patterned surface were used to study fibronectin adsorption and neuronal cell behavior. Fibronectin adsorption showed weak differences regarding the adsorbed amount (evaluated by XPS), but large differences in adsorbed layer morphology as observed by AFM. A fine granular morphology, with dimensions up to 8 nm height and 50–150 nm width, was observed on top of a thin adsorbed layer in the case of PS, PA98, and of a surface made of nanoscale inclusions of the latter in PS. In contrast, the layer adsorbed on PA80, which carries more ionizable groups, showed a higher roughness on the PA80 zones with differences in height up to 30 nm and characteristic lateral dimensions of 400 nm. On substrates of the former category, the cells formed large clusters, revealing poor interactions with the substrate. On PA80, the cells formed large networks with only a few small clusters. The adsorbed layer roughness, resulting from aggregation of fibronectin upon adsorption and from the substrate surface chemical composition, is responsible for neuronal cell spreading and growth. Its effect is not prevented by the presence of inclusions (&lt; 30% of the surface) responsible for smoother areas of adsorbed fibronectin and for protrusions below 40 nm. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.31739</identifier><identifier>PMID: 18085643</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adsorption ; Animals ; Brain ; Cell Adhesion ; Cells, Cultured ; Embryo, Mammalian ; fibronectin ; Fibronectins - chemistry ; Fibronectins - ultrastructure ; Mice ; Microscopy, Atomic Force ; Microscopy, Fluorescence ; neuronal cells ; Neurons - cytology ; Neurons - metabolism ; patterned surfaces ; Polymethacrylic Acids - chemistry ; Polystyrenes - chemistry ; protein adsorption ; Substrate Specificity ; Surface Properties</subject><ispartof>Journal of biomedical materials research. Part A, 2008-10, Vol.87A (1), p.116-128</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3989-c62490e8f13cb7e04b620e233575fba4866cd8f1e7deeddfeb97b73ea8a7c49f3</citedby><cites>FETCH-LOGICAL-c3989-c62490e8f13cb7e04b620e233575fba4866cd8f1e7deeddfeb97b73ea8a7c49f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.31739$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.31739$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18085643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dekeyser, C. M.</creatorcontrib><creatorcontrib>Zuyderhoff, E.</creatorcontrib><creatorcontrib>Giuliano, R. E.</creatorcontrib><creatorcontrib>Federoff, H. J.</creatorcontrib><creatorcontrib>Dupont-Gillain, Ch. C.</creatorcontrib><creatorcontrib>Rouxhet, P. G.</creatorcontrib><title>A rough morphology of the adsorbed fibronectin layer favors adhesion of neuronal cells</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>A range of substrates made of polystyrene (PS) and poly(methyl methacrylate)–poly(methacrylic acid) copolymer (PMMA–PMAA) containing 98 and 80% PMMA (PA98, PA80) and presenting a homogeneous or a patterned surface were used to study fibronectin adsorption and neuronal cell behavior. Fibronectin adsorption showed weak differences regarding the adsorbed amount (evaluated by XPS), but large differences in adsorbed layer morphology as observed by AFM. A fine granular morphology, with dimensions up to 8 nm height and 50–150 nm width, was observed on top of a thin adsorbed layer in the case of PS, PA98, and of a surface made of nanoscale inclusions of the latter in PS. In contrast, the layer adsorbed on PA80, which carries more ionizable groups, showed a higher roughness on the PA80 zones with differences in height up to 30 nm and characteristic lateral dimensions of 400 nm. On substrates of the former category, the cells formed large clusters, revealing poor interactions with the substrate. On PA80, the cells formed large networks with only a few small clusters. The adsorbed layer roughness, resulting from aggregation of fibronectin upon adsorption and from the substrate surface chemical composition, is responsible for neuronal cell spreading and growth. Its effect is not prevented by the presence of inclusions (&lt; 30% of the surface) responsible for smoother areas of adsorbed fibronectin and for protrusions below 40 nm. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008</description><subject>Adsorption</subject><subject>Animals</subject><subject>Brain</subject><subject>Cell Adhesion</subject><subject>Cells, Cultured</subject><subject>Embryo, Mammalian</subject><subject>fibronectin</subject><subject>Fibronectins - chemistry</subject><subject>Fibronectins - ultrastructure</subject><subject>Mice</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Fluorescence</subject><subject>neuronal cells</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>patterned surfaces</subject><subject>Polymethacrylic Acids - chemistry</subject><subject>Polystyrenes - chemistry</subject><subject>protein adsorption</subject><subject>Substrate Specificity</subject><subject>Surface Properties</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M9P2zAcBXBrYhod47Q78onLlM6Of8XHUjHGxODCqMTFspOv20ASF7uB9b9fSju4wcmW_HlP1kPoKyVjSkj-_c61YztmVDH9AY2oEHnGtRR7mzvXGcu13EefU7obsCQi_4T2aUEKITkboZsJjqGfL3Ab4nIRmjBf4-DxagHYVilEBxX2tYuhg3JVd7ixa4jY28cQ0yAWkOrQbRId9AOyDS6hadIX9NHbJsHh7jxAf36cXk9_ZhdXZ-fTyUVWMl3orJQ51wQKT1npFBDuZE4gZ0wo4Z3lhZRlNbyCqgCqyoPTyikGtrCq5NqzA3S87V3G8NBDWpm2Tpsf2A5Cn4zUvOBE5-9CxgXhghYD_LaFZQwpRfBmGevWxrWhxGz2NsPexprnvQd9tKvtXQvVq90NPAC6BU91A-u3usyvk9__S7Ntpk4r-PuSsfHeSMWUMLPLMyNvZozdSmk4-wed8ptL</recordid><startdate>200810</startdate><enddate>200810</enddate><creator>Dekeyser, C. M.</creator><creator>Zuyderhoff, E.</creator><creator>Giuliano, R. E.</creator><creator>Federoff, H. J.</creator><creator>Dupont-Gillain, Ch. C.</creator><creator>Rouxhet, P. G.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200810</creationdate><title>A rough morphology of the adsorbed fibronectin layer favors adhesion of neuronal cells</title><author>Dekeyser, C. M. ; Zuyderhoff, E. ; Giuliano, R. E. ; Federoff, H. J. ; Dupont-Gillain, Ch. C. ; Rouxhet, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3989-c62490e8f13cb7e04b620e233575fba4866cd8f1e7deeddfeb97b73ea8a7c49f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adsorption</topic><topic>Animals</topic><topic>Brain</topic><topic>Cell Adhesion</topic><topic>Cells, Cultured</topic><topic>Embryo, Mammalian</topic><topic>fibronectin</topic><topic>Fibronectins - chemistry</topic><topic>Fibronectins - ultrastructure</topic><topic>Mice</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Fluorescence</topic><topic>neuronal cells</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>patterned surfaces</topic><topic>Polymethacrylic Acids - chemistry</topic><topic>Polystyrenes - chemistry</topic><topic>protein adsorption</topic><topic>Substrate Specificity</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dekeyser, C. M.</creatorcontrib><creatorcontrib>Zuyderhoff, E.</creatorcontrib><creatorcontrib>Giuliano, R. E.</creatorcontrib><creatorcontrib>Federoff, H. J.</creatorcontrib><creatorcontrib>Dupont-Gillain, Ch. C.</creatorcontrib><creatorcontrib>Rouxhet, P. G.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dekeyser, C. M.</au><au>Zuyderhoff, E.</au><au>Giuliano, R. E.</au><au>Federoff, H. J.</au><au>Dupont-Gillain, Ch. C.</au><au>Rouxhet, P. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A rough morphology of the adsorbed fibronectin layer favors adhesion of neuronal cells</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2008-10</date><risdate>2008</risdate><volume>87A</volume><issue>1</issue><spage>116</spage><epage>128</epage><pages>116-128</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>A range of substrates made of polystyrene (PS) and poly(methyl methacrylate)–poly(methacrylic acid) copolymer (PMMA–PMAA) containing 98 and 80% PMMA (PA98, PA80) and presenting a homogeneous or a patterned surface were used to study fibronectin adsorption and neuronal cell behavior. Fibronectin adsorption showed weak differences regarding the adsorbed amount (evaluated by XPS), but large differences in adsorbed layer morphology as observed by AFM. A fine granular morphology, with dimensions up to 8 nm height and 50–150 nm width, was observed on top of a thin adsorbed layer in the case of PS, PA98, and of a surface made of nanoscale inclusions of the latter in PS. In contrast, the layer adsorbed on PA80, which carries more ionizable groups, showed a higher roughness on the PA80 zones with differences in height up to 30 nm and characteristic lateral dimensions of 400 nm. On substrates of the former category, the cells formed large clusters, revealing poor interactions with the substrate. On PA80, the cells formed large networks with only a few small clusters. The adsorbed layer roughness, resulting from aggregation of fibronectin upon adsorption and from the substrate surface chemical composition, is responsible for neuronal cell spreading and growth. Its effect is not prevented by the presence of inclusions (&lt; 30% of the surface) responsible for smoother areas of adsorbed fibronectin and for protrusions below 40 nm. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>18085643</pmid><doi>10.1002/jbm.a.31739</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2008-10, Vol.87A (1), p.116-128
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_69484092
source MEDLINE; Access via Wiley Online Library
subjects Adsorption
Animals
Brain
Cell Adhesion
Cells, Cultured
Embryo, Mammalian
fibronectin
Fibronectins - chemistry
Fibronectins - ultrastructure
Mice
Microscopy, Atomic Force
Microscopy, Fluorescence
neuronal cells
Neurons - cytology
Neurons - metabolism
patterned surfaces
Polymethacrylic Acids - chemistry
Polystyrenes - chemistry
protein adsorption
Substrate Specificity
Surface Properties
title A rough morphology of the adsorbed fibronectin layer favors adhesion of neuronal cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20rough%20morphology%20of%20the%20adsorbed%20fibronectin%20layer%20favors%20adhesion%20of%20neuronal%20cells&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Dekeyser,%20C.%20M.&rft.date=2008-10&rft.volume=87A&rft.issue=1&rft.spage=116&rft.epage=128&rft.pages=116-128&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.31739&rft_dat=%3Cproquest_cross%3E69484092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34504518&rft_id=info:pmid/18085643&rfr_iscdi=true