HEMET: Mathematical model of biochemical pathways for simulation and prediction of HEpatocyte METabolism

Abstract Many computer studies and models have been developed in order to simulate cell biochemical pathways. The difficulty of integrating all the biochemical reactions that occur in a cell in a single model is the main reason for the poor results in the prediction and simulation of cell behaviour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2008-10, Vol.92 (1), p.121-134
Hauptverfasser: De Maria, C, Grassini, D, Vozzi, F, Vinci, B, Landi, A, Ahluwalia, A, Vozzi, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 1
container_start_page 121
container_title Computer methods and programs in biomedicine
container_volume 92
creator De Maria, C
Grassini, D
Vozzi, F
Vinci, B
Landi, A
Ahluwalia, A
Vozzi, G
description Abstract Many computer studies and models have been developed in order to simulate cell biochemical pathways. The difficulty of integrating all the biochemical reactions that occur in a cell in a single model is the main reason for the poor results in the prediction and simulation of cell behaviour under different chemical and physical stimuli. In this paper we have translated biochemical reactions into differential equations for the development of modular model of metabolism of a hepatocyte cultured in static and standard conditions (in a plastic multiwell placed in an incubator at 37 °C with 5% of CO2 ). Using biochemical equations and energetic considerations a set of non-linear differential equations has been derived and implemented in Simulink® . This set of equations mimics some of the principal metabolic pathways of biomolecules present in the culture medium. The software platform developed is subdivided into separate modules, each one describing a different metabolic pathway; they constitute a library which can be used for developing new modules and models to project, predict and validate cell behaviour in vitro.
doi_str_mv 10.1016/j.cmpb.2008.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69483617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0169260708001557</els_id><sourcerecordid>69483617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-91e6d607f7780b0b0753549a84488972e8b8c46dac7dfd92a01002f1e9a44c9c3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhS0EokPLC7BAWbFLuE4c_yCEhKqhg9SKRcvacpwb1UMSBzuhmrev0xmpEguQF5avvnNkn2NC3lEoKFD-cV_YYWqKEkAWwAsA9oJsqBRlLmpevySbBKm85CDOyJsY9wBQ1jV_Tc6o5AwEgw25321vtnefshsz3-NgZmdNnw2-xT7zXdY4b9P4aTgl4sEcYtb5kEU3LH2i_ZiZsc2mgK2zT8ek2m0T6-1hxix5m8b3Lg4X5FVn-ohvT_s5-flte3e5y69_XH2__HqdW8ZgzhVF3qYbd0JIaNISdVUzZSRjUipRomykZbw1VrRdq0oDNL2qo6gMY1bZ6px8OPpOwf9eMM56cNFi35sR_RI1V0xWnIr_glRVVc2VTGB5BG3wMQbs9BTcYMJBU9BrEXqv1yL0WoQGrlMRSfT-5L40A7bPklPyCfh8BDCF8cdh0NE6HG0KMqCddevdv_2__CW3vRvXon7hAePeL2FMMWuqY6lB365fYf0JIAFoXYvqEcjhriI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19335698</pqid></control><display><type>article</type><title>HEMET: Mathematical model of biochemical pathways for simulation and prediction of HEpatocyte METabolism</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>De Maria, C ; Grassini, D ; Vozzi, F ; Vinci, B ; Landi, A ; Ahluwalia, A ; Vozzi, G</creator><creatorcontrib>De Maria, C ; Grassini, D ; Vozzi, F ; Vinci, B ; Landi, A ; Ahluwalia, A ; Vozzi, G</creatorcontrib><description>Abstract Many computer studies and models have been developed in order to simulate cell biochemical pathways. The difficulty of integrating all the biochemical reactions that occur in a cell in a single model is the main reason for the poor results in the prediction and simulation of cell behaviour under different chemical and physical stimuli. In this paper we have translated biochemical reactions into differential equations for the development of modular model of metabolism of a hepatocyte cultured in static and standard conditions (in a plastic multiwell placed in an incubator at 37 °C with 5% of CO2 ). Using biochemical equations and energetic considerations a set of non-linear differential equations has been derived and implemented in Simulink® . This set of equations mimics some of the principal metabolic pathways of biomolecules present in the culture medium. The software platform developed is subdivided into separate modules, each one describing a different metabolic pathway; they constitute a library which can be used for developing new modules and models to project, predict and validate cell behaviour in vitro.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2008.06.004</identifier><identifier>PMID: 18640740</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Biochemical equations ; Cell model ; Cells, Cultured ; Computer Simulation ; Dynamic systems ; Hepatocyte ; Hepatocytes - metabolism ; Humans ; Internal Medicine ; Metabolism ; Metabolome - physiology ; Models, Biological ; Other ; Proteome - metabolism ; Signal Transduction - physiology ; Software</subject><ispartof>Computer methods and programs in biomedicine, 2008-10, Vol.92 (1), p.121-134</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2008 Elsevier Ireland Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-91e6d607f7780b0b0753549a84488972e8b8c46dac7dfd92a01002f1e9a44c9c3</citedby><cites>FETCH-LOGICAL-c440t-91e6d607f7780b0b0753549a84488972e8b8c46dac7dfd92a01002f1e9a44c9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169260708001557$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18640740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Maria, C</creatorcontrib><creatorcontrib>Grassini, D</creatorcontrib><creatorcontrib>Vozzi, F</creatorcontrib><creatorcontrib>Vinci, B</creatorcontrib><creatorcontrib>Landi, A</creatorcontrib><creatorcontrib>Ahluwalia, A</creatorcontrib><creatorcontrib>Vozzi, G</creatorcontrib><title>HEMET: Mathematical model of biochemical pathways for simulation and prediction of HEpatocyte METabolism</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract Many computer studies and models have been developed in order to simulate cell biochemical pathways. The difficulty of integrating all the biochemical reactions that occur in a cell in a single model is the main reason for the poor results in the prediction and simulation of cell behaviour under different chemical and physical stimuli. In this paper we have translated biochemical reactions into differential equations for the development of modular model of metabolism of a hepatocyte cultured in static and standard conditions (in a plastic multiwell placed in an incubator at 37 °C with 5% of CO2 ). Using biochemical equations and energetic considerations a set of non-linear differential equations has been derived and implemented in Simulink® . This set of equations mimics some of the principal metabolic pathways of biomolecules present in the culture medium. The software platform developed is subdivided into separate modules, each one describing a different metabolic pathway; they constitute a library which can be used for developing new modules and models to project, predict and validate cell behaviour in vitro.</description><subject>Algorithms</subject><subject>Biochemical equations</subject><subject>Cell model</subject><subject>Cells, Cultured</subject><subject>Computer Simulation</subject><subject>Dynamic systems</subject><subject>Hepatocyte</subject><subject>Hepatocytes - metabolism</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Metabolism</subject><subject>Metabolome - physiology</subject><subject>Models, Biological</subject><subject>Other</subject><subject>Proteome - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Software</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAUhS0EokPLC7BAWbFLuE4c_yCEhKqhg9SKRcvacpwb1UMSBzuhmrev0xmpEguQF5avvnNkn2NC3lEoKFD-cV_YYWqKEkAWwAsA9oJsqBRlLmpevySbBKm85CDOyJsY9wBQ1jV_Tc6o5AwEgw25321vtnefshsz3-NgZmdNnw2-xT7zXdY4b9P4aTgl4sEcYtb5kEU3LH2i_ZiZsc2mgK2zT8ek2m0T6-1hxix5m8b3Lg4X5FVn-ohvT_s5-flte3e5y69_XH2__HqdW8ZgzhVF3qYbd0JIaNISdVUzZSRjUipRomykZbw1VrRdq0oDNL2qo6gMY1bZ6px8OPpOwf9eMM56cNFi35sR_RI1V0xWnIr_glRVVc2VTGB5BG3wMQbs9BTcYMJBU9BrEXqv1yL0WoQGrlMRSfT-5L40A7bPklPyCfh8BDCF8cdh0NE6HG0KMqCddevdv_2__CW3vRvXon7hAePeL2FMMWuqY6lB365fYf0JIAFoXYvqEcjhriI</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>De Maria, C</creator><creator>Grassini, D</creator><creator>Vozzi, F</creator><creator>Vinci, B</creator><creator>Landi, A</creator><creator>Ahluwalia, A</creator><creator>Vozzi, G</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20081001</creationdate><title>HEMET: Mathematical model of biochemical pathways for simulation and prediction of HEpatocyte METabolism</title><author>De Maria, C ; Grassini, D ; Vozzi, F ; Vinci, B ; Landi, A ; Ahluwalia, A ; Vozzi, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-91e6d607f7780b0b0753549a84488972e8b8c46dac7dfd92a01002f1e9a44c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Biochemical equations</topic><topic>Cell model</topic><topic>Cells, Cultured</topic><topic>Computer Simulation</topic><topic>Dynamic systems</topic><topic>Hepatocyte</topic><topic>Hepatocytes - metabolism</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Metabolism</topic><topic>Metabolome - physiology</topic><topic>Models, Biological</topic><topic>Other</topic><topic>Proteome - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Maria, C</creatorcontrib><creatorcontrib>Grassini, D</creatorcontrib><creatorcontrib>Vozzi, F</creatorcontrib><creatorcontrib>Vinci, B</creatorcontrib><creatorcontrib>Landi, A</creatorcontrib><creatorcontrib>Ahluwalia, A</creatorcontrib><creatorcontrib>Vozzi, G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Maria, C</au><au>Grassini, D</au><au>Vozzi, F</au><au>Vinci, B</au><au>Landi, A</au><au>Ahluwalia, A</au><au>Vozzi, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HEMET: Mathematical model of biochemical pathways for simulation and prediction of HEpatocyte METabolism</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>92</volume><issue>1</issue><spage>121</spage><epage>134</epage><pages>121-134</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract Many computer studies and models have been developed in order to simulate cell biochemical pathways. The difficulty of integrating all the biochemical reactions that occur in a cell in a single model is the main reason for the poor results in the prediction and simulation of cell behaviour under different chemical and physical stimuli. In this paper we have translated biochemical reactions into differential equations for the development of modular model of metabolism of a hepatocyte cultured in static and standard conditions (in a plastic multiwell placed in an incubator at 37 °C with 5% of CO2 ). Using biochemical equations and energetic considerations a set of non-linear differential equations has been derived and implemented in Simulink® . This set of equations mimics some of the principal metabolic pathways of biomolecules present in the culture medium. The software platform developed is subdivided into separate modules, each one describing a different metabolic pathway; they constitute a library which can be used for developing new modules and models to project, predict and validate cell behaviour in vitro.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>18640740</pmid><doi>10.1016/j.cmpb.2008.06.004</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2008-10, Vol.92 (1), p.121-134
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_69483617
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Biochemical equations
Cell model
Cells, Cultured
Computer Simulation
Dynamic systems
Hepatocyte
Hepatocytes - metabolism
Humans
Internal Medicine
Metabolism
Metabolome - physiology
Models, Biological
Other
Proteome - metabolism
Signal Transduction - physiology
Software
title HEMET: Mathematical model of biochemical pathways for simulation and prediction of HEpatocyte METabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HEMET:%20Mathematical%20model%20of%20biochemical%20pathways%20for%20simulation%20and%20prediction%20of%20HEpatocyte%20METabolism&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=De%20Maria,%20C&rft.date=2008-10-01&rft.volume=92&rft.issue=1&rft.spage=121&rft.epage=134&rft.pages=121-134&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2008.06.004&rft_dat=%3Cproquest_cross%3E69483617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19335698&rft_id=info:pmid/18640740&rft_els_id=1_s2_0_S0169260708001557&rfr_iscdi=true