Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices

The local anodic oxidation (LAO) by the tip of atomic force microscope (AFM) is used for fabrication of nanometer-scaled structures and devices. We study the technology of LAO applied to semiconductor heterostructures, theoretically and experimentally as well. The goal is to improve the LAO process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultramicroscopy 2008-09, Vol.108 (10), p.1021-1024
Hauptverfasser: Cambel, Vladimír, Martaus, Jozef, Šoltýs, Ján, Kúdela, Robert, Gregušová, Dagmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1024
container_issue 10
container_start_page 1021
container_title Ultramicroscopy
container_volume 108
creator Cambel, Vladimír
Martaus, Jozef
Šoltýs, Ján
Kúdela, Robert
Gregušová, Dagmar
description The local anodic oxidation (LAO) by the tip of atomic force microscope (AFM) is used for fabrication of nanometer-scaled structures and devices. We study the technology of LAO applied to semiconductor heterostructures, theoretically and experimentally as well. The goal is to improve the LAO process itself, i.e., to create narrow LAO lines that form high-energy barriers in the plane with the 2D electron gas. In the first part we show the electric field distribution in the system tip-sample during LAO. For samples with low-conductive cap layer the maximum electric field is shifted apart the tip apex, which leads to wide oxide lines. Our Monte Carlo (MC) calculations show how the height of the energy barrier in the system depends on the geometry of the created lines (trenches), and on voltage applied to the structure. Based on the calculations, we have proposed a novel LAO technology and applied it to InGaP/AlGaAs/GaAs heterostructure with doping layer only 6 nm beneath the surface. The doping layer can be oxidized easily by the AFM tip in this case, and the oxide objects can be removed by several etchants. This approach to the LAO technology leads to narrow LAO trenches (∼60 nm) and to energy barriers high enough for room- and low-temperature applications.
doi_str_mv 10.1016/j.ultramic.2008.04.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69482376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399108000697</els_id><sourcerecordid>69482376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-e843ccf8b7f5cafe4bc95c09de2a3cf5efb167871adb21a38f290c3d15df2a7d3</originalsourceid><addsrcrecordid>eNqFkE2L2zAQhsXSZZNN-xeCTr3Zqw9blm8NofsBKbl0z0IejUDBsVLJDt1_X4ek9NiTGPG88zIPIWvOSs64ejqUUz8mewxQCsZ0yaqSSXFHllw3bSEaIT-RJZOsKmTb8gV5zPnAGOOs0g9kwXWtaqXkkux3EWxP7RBdABp_B2fHEAfafdDN8w86hhN1eMY-ntBRHxMd4jzRjHNzHNwE4-XvEsdzAMyfyb23fcYvt3dF3p-__9y-Frv9y9t2sytAKjUWqCsJ4HXX-Bqsx6qDtgbWOhRWgq_Rd1w1uuHWdYJbqb1oGUjHa-eFbZxcka_XvacUf02YR3MMGbDv7YBxyka1lRayUTOoriCkmHNCb04pHG36MJyZi0pzMH9VmotKwyozq5yD61vD1B3R_Yvd3M3AtyuA853ngMlkCDgAupAQRuNi-F_HH-GiiqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69482376</pqid></control><display><type>article</type><title>Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cambel, Vladimír ; Martaus, Jozef ; Šoltýs, Ján ; Kúdela, Robert ; Gregušová, Dagmar</creator><creatorcontrib>Cambel, Vladimír ; Martaus, Jozef ; Šoltýs, Ján ; Kúdela, Robert ; Gregušová, Dagmar</creatorcontrib><description>The local anodic oxidation (LAO) by the tip of atomic force microscope (AFM) is used for fabrication of nanometer-scaled structures and devices. We study the technology of LAO applied to semiconductor heterostructures, theoretically and experimentally as well. The goal is to improve the LAO process itself, i.e., to create narrow LAO lines that form high-energy barriers in the plane with the 2D electron gas. In the first part we show the electric field distribution in the system tip-sample during LAO. For samples with low-conductive cap layer the maximum electric field is shifted apart the tip apex, which leads to wide oxide lines. Our Monte Carlo (MC) calculations show how the height of the energy barrier in the system depends on the geometry of the created lines (trenches), and on voltage applied to the structure. Based on the calculations, we have proposed a novel LAO technology and applied it to InGaP/AlGaAs/GaAs heterostructure with doping layer only 6 nm beneath the surface. The doping layer can be oxidized easily by the AFM tip in this case, and the oxide objects can be removed by several etchants. This approach to the LAO technology leads to narrow LAO trenches (∼60 nm) and to energy barriers high enough for room- and low-temperature applications.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2008.04.032</identifier><identifier>PMID: 18565663</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Atomic force microscope ; Computer simulations ; Local anodic oxidation ; Mesoscopic and nanoscale systems ; Nanooxidation</subject><ispartof>Ultramicroscopy, 2008-09, Vol.108 (10), p.1021-1024</ispartof><rights>2008 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-e843ccf8b7f5cafe4bc95c09de2a3cf5efb167871adb21a38f290c3d15df2a7d3</citedby><cites>FETCH-LOGICAL-c366t-e843ccf8b7f5cafe4bc95c09de2a3cf5efb167871adb21a38f290c3d15df2a7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultramic.2008.04.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18565663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cambel, Vladimír</creatorcontrib><creatorcontrib>Martaus, Jozef</creatorcontrib><creatorcontrib>Šoltýs, Ján</creatorcontrib><creatorcontrib>Kúdela, Robert</creatorcontrib><creatorcontrib>Gregušová, Dagmar</creatorcontrib><title>Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>The local anodic oxidation (LAO) by the tip of atomic force microscope (AFM) is used for fabrication of nanometer-scaled structures and devices. We study the technology of LAO applied to semiconductor heterostructures, theoretically and experimentally as well. The goal is to improve the LAO process itself, i.e., to create narrow LAO lines that form high-energy barriers in the plane with the 2D electron gas. In the first part we show the electric field distribution in the system tip-sample during LAO. For samples with low-conductive cap layer the maximum electric field is shifted apart the tip apex, which leads to wide oxide lines. Our Monte Carlo (MC) calculations show how the height of the energy barrier in the system depends on the geometry of the created lines (trenches), and on voltage applied to the structure. Based on the calculations, we have proposed a novel LAO technology and applied it to InGaP/AlGaAs/GaAs heterostructure with doping layer only 6 nm beneath the surface. The doping layer can be oxidized easily by the AFM tip in this case, and the oxide objects can be removed by several etchants. This approach to the LAO technology leads to narrow LAO trenches (∼60 nm) and to energy barriers high enough for room- and low-temperature applications.</description><subject>Atomic force microscope</subject><subject>Computer simulations</subject><subject>Local anodic oxidation</subject><subject>Mesoscopic and nanoscale systems</subject><subject>Nanooxidation</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE2L2zAQhsXSZZNN-xeCTr3Zqw9blm8NofsBKbl0z0IejUDBsVLJDt1_X4ek9NiTGPG88zIPIWvOSs64ejqUUz8mewxQCsZ0yaqSSXFHllw3bSEaIT-RJZOsKmTb8gV5zPnAGOOs0g9kwXWtaqXkkux3EWxP7RBdABp_B2fHEAfafdDN8w86hhN1eMY-ntBRHxMd4jzRjHNzHNwE4-XvEsdzAMyfyb23fcYvt3dF3p-__9y-Frv9y9t2sytAKjUWqCsJ4HXX-Bqsx6qDtgbWOhRWgq_Rd1w1uuHWdYJbqb1oGUjHa-eFbZxcka_XvacUf02YR3MMGbDv7YBxyka1lRayUTOoriCkmHNCb04pHG36MJyZi0pzMH9VmotKwyozq5yD61vD1B3R_Yvd3M3AtyuA853ngMlkCDgAupAQRuNi-F_HH-GiiqY</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Cambel, Vladimír</creator><creator>Martaus, Jozef</creator><creator>Šoltýs, Ján</creator><creator>Kúdela, Robert</creator><creator>Gregušová, Dagmar</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080901</creationdate><title>Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices</title><author>Cambel, Vladimír ; Martaus, Jozef ; Šoltýs, Ján ; Kúdela, Robert ; Gregušová, Dagmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-e843ccf8b7f5cafe4bc95c09de2a3cf5efb167871adb21a38f290c3d15df2a7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Atomic force microscope</topic><topic>Computer simulations</topic><topic>Local anodic oxidation</topic><topic>Mesoscopic and nanoscale systems</topic><topic>Nanooxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cambel, Vladimír</creatorcontrib><creatorcontrib>Martaus, Jozef</creatorcontrib><creatorcontrib>Šoltýs, Ján</creatorcontrib><creatorcontrib>Kúdela, Robert</creatorcontrib><creatorcontrib>Gregušová, Dagmar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cambel, Vladimír</au><au>Martaus, Jozef</au><au>Šoltýs, Ján</au><au>Kúdela, Robert</au><au>Gregušová, Dagmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>108</volume><issue>10</issue><spage>1021</spage><epage>1024</epage><pages>1021-1024</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>The local anodic oxidation (LAO) by the tip of atomic force microscope (AFM) is used for fabrication of nanometer-scaled structures and devices. We study the technology of LAO applied to semiconductor heterostructures, theoretically and experimentally as well. The goal is to improve the LAO process itself, i.e., to create narrow LAO lines that form high-energy barriers in the plane with the 2D electron gas. In the first part we show the electric field distribution in the system tip-sample during LAO. For samples with low-conductive cap layer the maximum electric field is shifted apart the tip apex, which leads to wide oxide lines. Our Monte Carlo (MC) calculations show how the height of the energy barrier in the system depends on the geometry of the created lines (trenches), and on voltage applied to the structure. Based on the calculations, we have proposed a novel LAO technology and applied it to InGaP/AlGaAs/GaAs heterostructure with doping layer only 6 nm beneath the surface. The doping layer can be oxidized easily by the AFM tip in this case, and the oxide objects can be removed by several etchants. This approach to the LAO technology leads to narrow LAO trenches (∼60 nm) and to energy barriers high enough for room- and low-temperature applications.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>18565663</pmid><doi>10.1016/j.ultramic.2008.04.032</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3991
ispartof Ultramicroscopy, 2008-09, Vol.108 (10), p.1021-1024
issn 0304-3991
1879-2723
language eng
recordid cdi_proquest_miscellaneous_69482376
source Elsevier ScienceDirect Journals Complete
subjects Atomic force microscope
Computer simulations
Local anodic oxidation
Mesoscopic and nanoscale systems
Nanooxidation
title Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20anodic%20oxidation%20by%20AFM%20tip%20developed%20for%20novel%20semiconductor%20nanodevices&rft.jtitle=Ultramicroscopy&rft.au=Cambel,%20Vladim%C3%ADr&rft.date=2008-09-01&rft.volume=108&rft.issue=10&rft.spage=1021&rft.epage=1024&rft.pages=1021-1024&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2008.04.032&rft_dat=%3Cproquest_cross%3E69482376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69482376&rft_id=info:pmid/18565663&rft_els_id=S0304399108000697&rfr_iscdi=true