Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport

Improved size monodispersity of populations of polymer nanospheres is of enormous interest in the fields of nanotechnology and nanomedicine. As such, the knowledge of exact experimental conditions for precise production of nanospheres is needed for nonaqueous systems. This work presents the use of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2008-09, Vol.24 (17), p.9717-9726
Hauptverfasser: Laulicht, Bryan, Cheifetz, Peter, Mathiowitz, Edith, Tripathi, Anubhav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9726
container_issue 17
container_start_page 9717
container_title Langmuir
container_volume 24
creator Laulicht, Bryan
Cheifetz, Peter
Mathiowitz, Edith
Tripathi, Anubhav
description Improved size monodispersity of populations of polymer nanospheres is of enormous interest in the fields of nanotechnology and nanomedicine. As such, the knowledge of exact experimental conditions for precise production of nanospheres is needed for nonaqueous systems. This work presents the use of controlled microfluidic transport methods to study the experimental parameters for fabricating nanoparticles utilizing phase inversion. We report two microfluidic methods for forming polymer nanospheres in small batches to determine the formation conditions. These conditions were then implemented to perform higher throughput formation of polymer nanospheres of the desired size. The controlled microfluidic environment in the laminar flow regime produces improved size monodispersity, decreased average diameter, and affords a greater degree of control over the nanosphere size distribution without adding surfactants or additional solvents. Experiments show a nonlinear trend toward decreasing size with decreasing polymer concentration and a linear trend toward decreasing size with increasing flow rate indicating time-course-dependent nucleation and growth mechanism of formation for the resultant nanosphere population within the range of conditions tested.
doi_str_mv 10.1021/la8009332
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69479438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69479438</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-25078a2c38b3babcabecaabb21af920c1c2c320312430e9e5b047478caed34803</originalsourceid><addsrcrecordid>eNpt0E1vEzEQBmALgWgoHPgDaC8g9bBl_LFr75FGDSC1BbWpkLhYY8crXJx1sHdb-u9xSZReeprDPHo18xLylsIxBUY_BlQAHefsGZnRhkHdKCafkxlIwWspWn5AXuV8Aw9IdC_JAVWtooLSGflxeothwtHHoYp9NY_D6IcpTrlahHhXXeAQ8-aXS65axLTeOnP_36UYgltV596m2IfJr7ytlgmHvIlpfE1e9Biye7Obh-R6cbqcf6nPvn3-Ov90ViNXdKxZA1Ihs1wZbtBYNM4iGsMo9h0DS23ZMeCUCQ6uc40BIYVUFt2KCwX8kHzY5m5S_DO5POq1z9aFgIMrX-i2E7ITXBV4tIXl2pyT6_Um-TWme01BP7So9y0W-24XOpm1Wz3KXW0FvN8BzBZDX762Pu8dg5axtmmKq7fO59H93e8x_dat5LLRy-9XGq5A_bw8udDtYy7arG_ilIbS3RMH_gNwyJU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69479438</pqid></control><display><type>article</type><title>Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport</title><source>ACS Publications</source><source>MEDLINE</source><creator>Laulicht, Bryan ; Cheifetz, Peter ; Mathiowitz, Edith ; Tripathi, Anubhav</creator><creatorcontrib>Laulicht, Bryan ; Cheifetz, Peter ; Mathiowitz, Edith ; Tripathi, Anubhav</creatorcontrib><description>Improved size monodispersity of populations of polymer nanospheres is of enormous interest in the fields of nanotechnology and nanomedicine. As such, the knowledge of exact experimental conditions for precise production of nanospheres is needed for nonaqueous systems. This work presents the use of controlled microfluidic transport methods to study the experimental parameters for fabricating nanoparticles utilizing phase inversion. We report two microfluidic methods for forming polymer nanospheres in small batches to determine the formation conditions. These conditions were then implemented to perform higher throughput formation of polymer nanospheres of the desired size. The controlled microfluidic environment in the laminar flow regime produces improved size monodispersity, decreased average diameter, and affords a greater degree of control over the nanosphere size distribution without adding surfactants or additional solvents. Experiments show a nonlinear trend toward decreasing size with decreasing polymer concentration and a linear trend toward decreasing size with increasing flow rate indicating time-course-dependent nucleation and growth mechanism of formation for the resultant nanosphere population within the range of conditions tested.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la8009332</identifier><identifier>PMID: 18681411</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Physical - methods ; Colloidal state and disperse state ; Drug Carriers ; Drug Delivery Systems ; Exact sciences and technology ; General and physical chemistry ; Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Models, Statistical ; Nanoparticles - chemistry ; Nanospheres - chemistry ; Nanotechnology - methods ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Polymers - chemistry ; Solvents - chemistry ; Surface physical chemistry ; Surface Properties</subject><ispartof>Langmuir, 2008-09, Vol.24 (17), p.9717-9726</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-25078a2c38b3babcabecaabb21af920c1c2c320312430e9e5b047478caed34803</citedby><cites>FETCH-LOGICAL-a381t-25078a2c38b3babcabecaabb21af920c1c2c320312430e9e5b047478caed34803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la8009332$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la8009332$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20622655$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18681411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laulicht, Bryan</creatorcontrib><creatorcontrib>Cheifetz, Peter</creatorcontrib><creatorcontrib>Mathiowitz, Edith</creatorcontrib><creatorcontrib>Tripathi, Anubhav</creatorcontrib><title>Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Improved size monodispersity of populations of polymer nanospheres is of enormous interest in the fields of nanotechnology and nanomedicine. As such, the knowledge of exact experimental conditions for precise production of nanospheres is needed for nonaqueous systems. This work presents the use of controlled microfluidic transport methods to study the experimental parameters for fabricating nanoparticles utilizing phase inversion. We report two microfluidic methods for forming polymer nanospheres in small batches to determine the formation conditions. These conditions were then implemented to perform higher throughput formation of polymer nanospheres of the desired size. The controlled microfluidic environment in the laminar flow regime produces improved size monodispersity, decreased average diameter, and affords a greater degree of control over the nanosphere size distribution without adding surfactants or additional solvents. Experiments show a nonlinear trend toward decreasing size with decreasing polymer concentration and a linear trend toward decreasing size with increasing flow rate indicating time-course-dependent nucleation and growth mechanism of formation for the resultant nanosphere population within the range of conditions tested.</description><subject>Chemistry</subject><subject>Chemistry, Physical - methods</subject><subject>Colloidal state and disperse state</subject><subject>Drug Carriers</subject><subject>Drug Delivery Systems</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Models, Statistical</subject><subject>Nanoparticles - chemistry</subject><subject>Nanospheres - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Polymers - chemistry</subject><subject>Solvents - chemistry</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1vEzEQBmALgWgoHPgDaC8g9bBl_LFr75FGDSC1BbWpkLhYY8crXJx1sHdb-u9xSZReeprDPHo18xLylsIxBUY_BlQAHefsGZnRhkHdKCafkxlIwWspWn5AXuV8Aw9IdC_JAVWtooLSGflxeothwtHHoYp9NY_D6IcpTrlahHhXXeAQ8-aXS65axLTeOnP_36UYgltV596m2IfJr7ytlgmHvIlpfE1e9Biye7Obh-R6cbqcf6nPvn3-Ov90ViNXdKxZA1Ihs1wZbtBYNM4iGsMo9h0DS23ZMeCUCQ6uc40BIYVUFt2KCwX8kHzY5m5S_DO5POq1z9aFgIMrX-i2E7ITXBV4tIXl2pyT6_Um-TWme01BP7So9y0W-24XOpm1Wz3KXW0FvN8BzBZDX762Pu8dg5axtmmKq7fO59H93e8x_dat5LLRy-9XGq5A_bw8udDtYy7arG_ilIbS3RMH_gNwyJU0</recordid><startdate>20080902</startdate><enddate>20080902</enddate><creator>Laulicht, Bryan</creator><creator>Cheifetz, Peter</creator><creator>Mathiowitz, Edith</creator><creator>Tripathi, Anubhav</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080902</creationdate><title>Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport</title><author>Laulicht, Bryan ; Cheifetz, Peter ; Mathiowitz, Edith ; Tripathi, Anubhav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-25078a2c38b3babcabecaabb21af920c1c2c320312430e9e5b047478caed34803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical - methods</topic><topic>Colloidal state and disperse state</topic><topic>Drug Carriers</topic><topic>Drug Delivery Systems</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Models, Statistical</topic><topic>Nanoparticles - chemistry</topic><topic>Nanospheres - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Polymers - chemistry</topic><topic>Solvents - chemistry</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laulicht, Bryan</creatorcontrib><creatorcontrib>Cheifetz, Peter</creatorcontrib><creatorcontrib>Mathiowitz, Edith</creatorcontrib><creatorcontrib>Tripathi, Anubhav</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laulicht, Bryan</au><au>Cheifetz, Peter</au><au>Mathiowitz, Edith</au><au>Tripathi, Anubhav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-09-02</date><risdate>2008</risdate><volume>24</volume><issue>17</issue><spage>9717</spage><epage>9726</epage><pages>9717-9726</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Improved size monodispersity of populations of polymer nanospheres is of enormous interest in the fields of nanotechnology and nanomedicine. As such, the knowledge of exact experimental conditions for precise production of nanospheres is needed for nonaqueous systems. This work presents the use of controlled microfluidic transport methods to study the experimental parameters for fabricating nanoparticles utilizing phase inversion. We report two microfluidic methods for forming polymer nanospheres in small batches to determine the formation conditions. These conditions were then implemented to perform higher throughput formation of polymer nanospheres of the desired size. The controlled microfluidic environment in the laminar flow regime produces improved size monodispersity, decreased average diameter, and affords a greater degree of control over the nanosphere size distribution without adding surfactants or additional solvents. Experiments show a nonlinear trend toward decreasing size with decreasing polymer concentration and a linear trend toward decreasing size with increasing flow rate indicating time-course-dependent nucleation and growth mechanism of formation for the resultant nanosphere population within the range of conditions tested.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18681411</pmid><doi>10.1021/la8009332</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2008-09, Vol.24 (17), p.9717-9726
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_69479438
source ACS Publications; MEDLINE
subjects Chemistry
Chemistry, Physical - methods
Colloidal state and disperse state
Drug Carriers
Drug Delivery Systems
Exact sciences and technology
General and physical chemistry
Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites
Microfluidic Analytical Techniques - methods
Microfluidics
Models, Statistical
Nanoparticles - chemistry
Nanospheres - chemistry
Nanotechnology - methods
Particle Size
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Polymers - chemistry
Solvents - chemistry
Surface physical chemistry
Surface Properties
title Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Continuous%20Flow%20Nanosphere%20Formation%20by%20Controlled%20Microfluidic%20Transport&rft.jtitle=Langmuir&rft.au=Laulicht,%20Bryan&rft.date=2008-09-02&rft.volume=24&rft.issue=17&rft.spage=9717&rft.epage=9726&rft.pages=9717-9726&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la8009332&rft_dat=%3Cproquest_cross%3E69479438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69479438&rft_id=info:pmid/18681411&rfr_iscdi=true