Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport
Improved size monodispersity of populations of polymer nanospheres is of enormous interest in the fields of nanotechnology and nanomedicine. As such, the knowledge of exact experimental conditions for precise production of nanospheres is needed for nonaqueous systems. This work presents the use of c...
Gespeichert in:
Veröffentlicht in: | Langmuir 2008-09, Vol.24 (17), p.9717-9726 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9726 |
---|---|
container_issue | 17 |
container_start_page | 9717 |
container_title | Langmuir |
container_volume | 24 |
creator | Laulicht, Bryan Cheifetz, Peter Mathiowitz, Edith Tripathi, Anubhav |
description | Improved size monodispersity of populations of polymer nanospheres is of enormous interest in the fields of nanotechnology and nanomedicine. As such, the knowledge of exact experimental conditions for precise production of nanospheres is needed for nonaqueous systems. This work presents the use of controlled microfluidic transport methods to study the experimental parameters for fabricating nanoparticles utilizing phase inversion. We report two microfluidic methods for forming polymer nanospheres in small batches to determine the formation conditions. These conditions were then implemented to perform higher throughput formation of polymer nanospheres of the desired size. The controlled microfluidic environment in the laminar flow regime produces improved size monodispersity, decreased average diameter, and affords a greater degree of control over the nanosphere size distribution without adding surfactants or additional solvents. Experiments show a nonlinear trend toward decreasing size with decreasing polymer concentration and a linear trend toward decreasing size with increasing flow rate indicating time-course-dependent nucleation and growth mechanism of formation for the resultant nanosphere population within the range of conditions tested. |
doi_str_mv | 10.1021/la8009332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69479438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69479438</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-25078a2c38b3babcabecaabb21af920c1c2c320312430e9e5b047478caed34803</originalsourceid><addsrcrecordid>eNpt0E1vEzEQBmALgWgoHPgDaC8g9bBl_LFr75FGDSC1BbWpkLhYY8crXJx1sHdb-u9xSZReeprDPHo18xLylsIxBUY_BlQAHefsGZnRhkHdKCafkxlIwWspWn5AXuV8Aw9IdC_JAVWtooLSGflxeothwtHHoYp9NY_D6IcpTrlahHhXXeAQ8-aXS65axLTeOnP_36UYgltV596m2IfJr7ytlgmHvIlpfE1e9Biye7Obh-R6cbqcf6nPvn3-Ov90ViNXdKxZA1Ihs1wZbtBYNM4iGsMo9h0DS23ZMeCUCQ6uc40BIYVUFt2KCwX8kHzY5m5S_DO5POq1z9aFgIMrX-i2E7ITXBV4tIXl2pyT6_Um-TWme01BP7So9y0W-24XOpm1Wz3KXW0FvN8BzBZDX762Pu8dg5axtmmKq7fO59H93e8x_dat5LLRy-9XGq5A_bw8udDtYy7arG_ilIbS3RMH_gNwyJU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69479438</pqid></control><display><type>article</type><title>Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport</title><source>ACS Publications</source><source>MEDLINE</source><creator>Laulicht, Bryan ; Cheifetz, Peter ; Mathiowitz, Edith ; Tripathi, Anubhav</creator><creatorcontrib>Laulicht, Bryan ; Cheifetz, Peter ; Mathiowitz, Edith ; Tripathi, Anubhav</creatorcontrib><description>Improved size monodispersity of populations of polymer nanospheres is of enormous interest in the fields of nanotechnology and nanomedicine. As such, the knowledge of exact experimental conditions for precise production of nanospheres is needed for nonaqueous systems. This work presents the use of controlled microfluidic transport methods to study the experimental parameters for fabricating nanoparticles utilizing phase inversion. We report two microfluidic methods for forming polymer nanospheres in small batches to determine the formation conditions. These conditions were then implemented to perform higher throughput formation of polymer nanospheres of the desired size. The controlled microfluidic environment in the laminar flow regime produces improved size monodispersity, decreased average diameter, and affords a greater degree of control over the nanosphere size distribution without adding surfactants or additional solvents. Experiments show a nonlinear trend toward decreasing size with decreasing polymer concentration and a linear trend toward decreasing size with increasing flow rate indicating time-course-dependent nucleation and growth mechanism of formation for the resultant nanosphere population within the range of conditions tested.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la8009332</identifier><identifier>PMID: 18681411</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Physical - methods ; Colloidal state and disperse state ; Drug Carriers ; Drug Delivery Systems ; Exact sciences and technology ; General and physical chemistry ; Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Models, Statistical ; Nanoparticles - chemistry ; Nanospheres - chemistry ; Nanotechnology - methods ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Polymers - chemistry ; Solvents - chemistry ; Surface physical chemistry ; Surface Properties</subject><ispartof>Langmuir, 2008-09, Vol.24 (17), p.9717-9726</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-25078a2c38b3babcabecaabb21af920c1c2c320312430e9e5b047478caed34803</citedby><cites>FETCH-LOGICAL-a381t-25078a2c38b3babcabecaabb21af920c1c2c320312430e9e5b047478caed34803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la8009332$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la8009332$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20622655$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18681411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laulicht, Bryan</creatorcontrib><creatorcontrib>Cheifetz, Peter</creatorcontrib><creatorcontrib>Mathiowitz, Edith</creatorcontrib><creatorcontrib>Tripathi, Anubhav</creatorcontrib><title>Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Improved size monodispersity of populations of polymer nanospheres is of enormous interest in the fields of nanotechnology and nanomedicine. As such, the knowledge of exact experimental conditions for precise production of nanospheres is needed for nonaqueous systems. This work presents the use of controlled microfluidic transport methods to study the experimental parameters for fabricating nanoparticles utilizing phase inversion. We report two microfluidic methods for forming polymer nanospheres in small batches to determine the formation conditions. These conditions were then implemented to perform higher throughput formation of polymer nanospheres of the desired size. The controlled microfluidic environment in the laminar flow regime produces improved size monodispersity, decreased average diameter, and affords a greater degree of control over the nanosphere size distribution without adding surfactants or additional solvents. Experiments show a nonlinear trend toward decreasing size with decreasing polymer concentration and a linear trend toward decreasing size with increasing flow rate indicating time-course-dependent nucleation and growth mechanism of formation for the resultant nanosphere population within the range of conditions tested.</description><subject>Chemistry</subject><subject>Chemistry, Physical - methods</subject><subject>Colloidal state and disperse state</subject><subject>Drug Carriers</subject><subject>Drug Delivery Systems</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Models, Statistical</subject><subject>Nanoparticles - chemistry</subject><subject>Nanospheres - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Polymers - chemistry</subject><subject>Solvents - chemistry</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1vEzEQBmALgWgoHPgDaC8g9bBl_LFr75FGDSC1BbWpkLhYY8crXJx1sHdb-u9xSZReeprDPHo18xLylsIxBUY_BlQAHefsGZnRhkHdKCafkxlIwWspWn5AXuV8Aw9IdC_JAVWtooLSGflxeothwtHHoYp9NY_D6IcpTrlahHhXXeAQ8-aXS65axLTeOnP_36UYgltV596m2IfJr7ytlgmHvIlpfE1e9Biye7Obh-R6cbqcf6nPvn3-Ov90ViNXdKxZA1Ihs1wZbtBYNM4iGsMo9h0DS23ZMeCUCQ6uc40BIYVUFt2KCwX8kHzY5m5S_DO5POq1z9aFgIMrX-i2E7ITXBV4tIXl2pyT6_Um-TWme01BP7So9y0W-24XOpm1Wz3KXW0FvN8BzBZDX762Pu8dg5axtmmKq7fO59H93e8x_dat5LLRy-9XGq5A_bw8udDtYy7arG_ilIbS3RMH_gNwyJU0</recordid><startdate>20080902</startdate><enddate>20080902</enddate><creator>Laulicht, Bryan</creator><creator>Cheifetz, Peter</creator><creator>Mathiowitz, Edith</creator><creator>Tripathi, Anubhav</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080902</creationdate><title>Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport</title><author>Laulicht, Bryan ; Cheifetz, Peter ; Mathiowitz, Edith ; Tripathi, Anubhav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-25078a2c38b3babcabecaabb21af920c1c2c320312430e9e5b047478caed34803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical - methods</topic><topic>Colloidal state and disperse state</topic><topic>Drug Carriers</topic><topic>Drug Delivery Systems</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Models, Statistical</topic><topic>Nanoparticles - chemistry</topic><topic>Nanospheres - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Polymers - chemistry</topic><topic>Solvents - chemistry</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laulicht, Bryan</creatorcontrib><creatorcontrib>Cheifetz, Peter</creatorcontrib><creatorcontrib>Mathiowitz, Edith</creatorcontrib><creatorcontrib>Tripathi, Anubhav</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laulicht, Bryan</au><au>Cheifetz, Peter</au><au>Mathiowitz, Edith</au><au>Tripathi, Anubhav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-09-02</date><risdate>2008</risdate><volume>24</volume><issue>17</issue><spage>9717</spage><epage>9726</epage><pages>9717-9726</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Improved size monodispersity of populations of polymer nanospheres is of enormous interest in the fields of nanotechnology and nanomedicine. As such, the knowledge of exact experimental conditions for precise production of nanospheres is needed for nonaqueous systems. This work presents the use of controlled microfluidic transport methods to study the experimental parameters for fabricating nanoparticles utilizing phase inversion. We report two microfluidic methods for forming polymer nanospheres in small batches to determine the formation conditions. These conditions were then implemented to perform higher throughput formation of polymer nanospheres of the desired size. The controlled microfluidic environment in the laminar flow regime produces improved size monodispersity, decreased average diameter, and affords a greater degree of control over the nanosphere size distribution without adding surfactants or additional solvents. Experiments show a nonlinear trend toward decreasing size with decreasing polymer concentration and a linear trend toward decreasing size with increasing flow rate indicating time-course-dependent nucleation and growth mechanism of formation for the resultant nanosphere population within the range of conditions tested.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18681411</pmid><doi>10.1021/la8009332</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2008-09, Vol.24 (17), p.9717-9726 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_69479438 |
source | ACS Publications; MEDLINE |
subjects | Chemistry Chemistry, Physical - methods Colloidal state and disperse state Drug Carriers Drug Delivery Systems Exact sciences and technology General and physical chemistry Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites Microfluidic Analytical Techniques - methods Microfluidics Models, Statistical Nanoparticles - chemistry Nanospheres - chemistry Nanotechnology - methods Particle Size Physical and chemical studies. Granulometry. Electrokinetic phenomena Polymers - chemistry Solvents - chemistry Surface physical chemistry Surface Properties |
title | Evaluation of Continuous Flow Nanosphere Formation by Controlled Microfluidic Transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Continuous%20Flow%20Nanosphere%20Formation%20by%20Controlled%20Microfluidic%20Transport&rft.jtitle=Langmuir&rft.au=Laulicht,%20Bryan&rft.date=2008-09-02&rft.volume=24&rft.issue=17&rft.spage=9717&rft.epage=9726&rft.pages=9717-9726&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la8009332&rft_dat=%3Cproquest_cross%3E69479438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69479438&rft_id=info:pmid/18681411&rfr_iscdi=true |