Meta-analysis of summary survival curve data

The use of standard univariate fixed‐ and random‐effects models in meta‐analysis has become well known in the last 20 years. However, these models are unsuitable for meta‐analysis of clinical trials that present multiple survival estimates (usually illustrated by a survival curve) during a follow‐up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2008-09, Vol.27 (22), p.4381-4396
Hauptverfasser: Arends, Lidia R., Hunink, M. G. Myriam, Stijnen, Theo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4396
container_issue 22
container_start_page 4381
container_title Statistics in medicine
container_volume 27
creator Arends, Lidia R.
Hunink, M. G. Myriam
Stijnen, Theo
description The use of standard univariate fixed‐ and random‐effects models in meta‐analysis has become well known in the last 20 years. However, these models are unsuitable for meta‐analysis of clinical trials that present multiple survival estimates (usually illustrated by a survival curve) during a follow‐up period. Therefore, special methods are needed to combine the survival curve data from different trials in a meta‐analysis. For this purpose, only fixed‐effects models have been suggested in the literature. In this paper, we propose a multivariate random‐effects model for joint analysis of survival proportions reported at multiple time points and in different studies, to be combined in a meta‐analysis. The model could be seen as a generalization of the fixed‐effects model of Dear (Biometrics 1994; 50:989–1002). We illustrate the method by using a simulated data example as well as using a clinical data example of meta‐analysis with aggregated survival curve data. All analyses can be carried out with standard general linear MIXED model software. Copyright © 2008 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.3311
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69469848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69469848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4231-1765c06f544066811fd07043e983e29166d0720f9a1b18aa18d62df3e22e915e3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqUg8QUoK8SCFI8dv5ZQoBS1sADE0nITRwokTWsnhf49rhrBitWd0RwdjS5Cp4CHgDG58kU1pBRgD_UBKxFjwuQ-6mMiRMwFsB468v4DYwBGxCHqgUw4k1T10eXMNiY2C1NufOGjOo98W1XGbUK6dbE2ZZSGwUaZacwxOshN6e1JlwP0dn_3OnqIp8_jyeh6GqcJoRCD4CzFPGdJgjmXAHmGBU6oVZJaooDzsBOcKwNzkMaAzDjJ8nAjVgGzdIDOd96lq1et9Y2uCp_asjQLW7dec5VwJRMZwIsdmLrae2dzvXTF9nsNWG-b0aEZvW0moGeds51XNvsDuyoCEO-Ar6K0m39F-mUy64QdX_jGfv_yxn1qLqhg-v1prB-DG27ErR7RH0_4eSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69469848</pqid></control><display><type>article</type><title>Meta-analysis of summary survival curve data</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Arends, Lidia R. ; Hunink, M. G. Myriam ; Stijnen, Theo</creator><creatorcontrib>Arends, Lidia R. ; Hunink, M. G. Myriam ; Stijnen, Theo</creatorcontrib><description>The use of standard univariate fixed‐ and random‐effects models in meta‐analysis has become well known in the last 20 years. However, these models are unsuitable for meta‐analysis of clinical trials that present multiple survival estimates (usually illustrated by a survival curve) during a follow‐up period. Therefore, special methods are needed to combine the survival curve data from different trials in a meta‐analysis. For this purpose, only fixed‐effects models have been suggested in the literature. In this paper, we propose a multivariate random‐effects model for joint analysis of survival proportions reported at multiple time points and in different studies, to be combined in a meta‐analysis. The model could be seen as a generalization of the fixed‐effects model of Dear (Biometrics 1994; 50:989–1002). We illustrate the method by using a simulated data example as well as using a clinical data example of meta‐analysis with aggregated survival curve data. All analyses can be carried out with standard general linear MIXED model software. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.3311</identifier><identifier>PMID: 18465839</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Analysis of Variance ; Bone Marrow Transplantation ; Clinical Trials as Topic - methods ; Computer Simulation ; Disease-Free Survival ; Humans ; Kaplan-Meier Estimate ; meta-analysis ; Meta-Analysis as Topic ; Models, Statistical ; multivariate random effects model ; Neoplasms - drug therapy ; Neoplasms - surgery ; Probability ; time to event</subject><ispartof>Statistics in medicine, 2008-09, Vol.27 (22), p.4381-4396</ispartof><rights>Copyright © 2008 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright (c) 2008 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4231-1765c06f544066811fd07043e983e29166d0720f9a1b18aa18d62df3e22e915e3</citedby><cites>FETCH-LOGICAL-c4231-1765c06f544066811fd07043e983e29166d0720f9a1b18aa18d62df3e22e915e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.3311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.3311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18465839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arends, Lidia R.</creatorcontrib><creatorcontrib>Hunink, M. G. Myriam</creatorcontrib><creatorcontrib>Stijnen, Theo</creatorcontrib><title>Meta-analysis of summary survival curve data</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>The use of standard univariate fixed‐ and random‐effects models in meta‐analysis has become well known in the last 20 years. However, these models are unsuitable for meta‐analysis of clinical trials that present multiple survival estimates (usually illustrated by a survival curve) during a follow‐up period. Therefore, special methods are needed to combine the survival curve data from different trials in a meta‐analysis. For this purpose, only fixed‐effects models have been suggested in the literature. In this paper, we propose a multivariate random‐effects model for joint analysis of survival proportions reported at multiple time points and in different studies, to be combined in a meta‐analysis. The model could be seen as a generalization of the fixed‐effects model of Dear (Biometrics 1994; 50:989–1002). We illustrate the method by using a simulated data example as well as using a clinical data example of meta‐analysis with aggregated survival curve data. All analyses can be carried out with standard general linear MIXED model software. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><subject>Analysis of Variance</subject><subject>Bone Marrow Transplantation</subject><subject>Clinical Trials as Topic - methods</subject><subject>Computer Simulation</subject><subject>Disease-Free Survival</subject><subject>Humans</subject><subject>Kaplan-Meier Estimate</subject><subject>meta-analysis</subject><subject>Meta-Analysis as Topic</subject><subject>Models, Statistical</subject><subject>multivariate random effects model</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - surgery</subject><subject>Probability</subject><subject>time to event</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtOwzAQRS0EoqUg8QUoK8SCFI8dv5ZQoBS1sADE0nITRwokTWsnhf49rhrBitWd0RwdjS5Cp4CHgDG58kU1pBRgD_UBKxFjwuQ-6mMiRMwFsB468v4DYwBGxCHqgUw4k1T10eXMNiY2C1NufOGjOo98W1XGbUK6dbE2ZZSGwUaZacwxOshN6e1JlwP0dn_3OnqIp8_jyeh6GqcJoRCD4CzFPGdJgjmXAHmGBU6oVZJaooDzsBOcKwNzkMaAzDjJ8nAjVgGzdIDOd96lq1et9Y2uCp_asjQLW7dec5VwJRMZwIsdmLrae2dzvXTF9nsNWG-b0aEZvW0moGeds51XNvsDuyoCEO-Ar6K0m39F-mUy64QdX_jGfv_yxn1qLqhg-v1prB-DG27ErR7RH0_4eSI</recordid><startdate>20080930</startdate><enddate>20080930</enddate><creator>Arends, Lidia R.</creator><creator>Hunink, M. G. Myriam</creator><creator>Stijnen, Theo</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080930</creationdate><title>Meta-analysis of summary survival curve data</title><author>Arends, Lidia R. ; Hunink, M. G. Myriam ; Stijnen, Theo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4231-1765c06f544066811fd07043e983e29166d0720f9a1b18aa18d62df3e22e915e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis of Variance</topic><topic>Bone Marrow Transplantation</topic><topic>Clinical Trials as Topic - methods</topic><topic>Computer Simulation</topic><topic>Disease-Free Survival</topic><topic>Humans</topic><topic>Kaplan-Meier Estimate</topic><topic>meta-analysis</topic><topic>Meta-Analysis as Topic</topic><topic>Models, Statistical</topic><topic>multivariate random effects model</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - surgery</topic><topic>Probability</topic><topic>time to event</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arends, Lidia R.</creatorcontrib><creatorcontrib>Hunink, M. G. Myriam</creatorcontrib><creatorcontrib>Stijnen, Theo</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arends, Lidia R.</au><au>Hunink, M. G. Myriam</au><au>Stijnen, Theo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meta-analysis of summary survival curve data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2008-09-30</date><risdate>2008</risdate><volume>27</volume><issue>22</issue><spage>4381</spage><epage>4396</epage><pages>4381-4396</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>The use of standard univariate fixed‐ and random‐effects models in meta‐analysis has become well known in the last 20 years. However, these models are unsuitable for meta‐analysis of clinical trials that present multiple survival estimates (usually illustrated by a survival curve) during a follow‐up period. Therefore, special methods are needed to combine the survival curve data from different trials in a meta‐analysis. For this purpose, only fixed‐effects models have been suggested in the literature. In this paper, we propose a multivariate random‐effects model for joint analysis of survival proportions reported at multiple time points and in different studies, to be combined in a meta‐analysis. The model could be seen as a generalization of the fixed‐effects model of Dear (Biometrics 1994; 50:989–1002). We illustrate the method by using a simulated data example as well as using a clinical data example of meta‐analysis with aggregated survival curve data. All analyses can be carried out with standard general linear MIXED model software. Copyright © 2008 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>18465839</pmid><doi>10.1002/sim.3311</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2008-09, Vol.27 (22), p.4381-4396
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_69469848
source MEDLINE; Access via Wiley Online Library
subjects Analysis of Variance
Bone Marrow Transplantation
Clinical Trials as Topic - methods
Computer Simulation
Disease-Free Survival
Humans
Kaplan-Meier Estimate
meta-analysis
Meta-Analysis as Topic
Models, Statistical
multivariate random effects model
Neoplasms - drug therapy
Neoplasms - surgery
Probability
time to event
title Meta-analysis of summary survival curve data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meta-analysis%20of%20summary%20survival%20curve%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Arends,%20Lidia%20R.&rft.date=2008-09-30&rft.volume=27&rft.issue=22&rft.spage=4381&rft.epage=4396&rft.pages=4381-4396&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.3311&rft_dat=%3Cproquest_cross%3E69469848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69469848&rft_id=info:pmid/18465839&rfr_iscdi=true