Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane

By combining electrophysiological, immunohistochemical, and computer modeling techniques, we examined the effects of halothane on the standing outward current (I (SO)) and the hyperpolarization-activated current (I (h)) in rat thalamocortical relay (TC) neurons of the dorsal lateral geniculate nucle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2008-09, Vol.456 (6), p.1061-1073
Hauptverfasser: Budde, Thomas, Coulon, Philippe, Pawlowski, Matthias, Meuth, Patrick, Kanyshkova, Tatyana, Japes, Ansgar, Meuth, Sven G, Pape, Hans-Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1073
container_issue 6
container_start_page 1061
container_title Pflügers Archiv
container_volume 456
creator Budde, Thomas
Coulon, Philippe
Pawlowski, Matthias
Meuth, Patrick
Kanyshkova, Tatyana
Japes, Ansgar
Meuth, Sven G
Pape, Hans-Christian
description By combining electrophysiological, immunohistochemical, and computer modeling techniques, we examined the effects of halothane on the standing outward current (I (SO)) and the hyperpolarization-activated current (I (h)) in rat thalamocortical relay (TC) neurons of the dorsal lateral geniculate nucleus (dLGN). Hyperpolarizing voltage steps elicited an instantaneous current component (I (i)) followed by a slower time-dependent current that represented I (h). Halothane reduced I (h) by shifting the voltage dependency of activation toward more negative potentials and by reducing the maximal conductance. Moreover, halothane augmented I (i) and I (SO). During the blockade of I (h) through Cs+, the current-voltage relationship of the halothane-sensitive current closely resembled the properties of a current through members of the TWIK-related acid-sensitive K+ (TASK) channel family (I (TASK)). Computer simulations in a single-compartment TC neuron model demonstrated that the modulation of I (h) and I (TASK) is sufficient to explain the halothane-induced hyperpolarization of the membrane potential observed in current clamp recordings. Immunohistochemical staining revealed protein expression of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel proteins HCN1, HCN2, and HCN4. Together with the dual effect of halothane on I (h) properties, these results suggest that I (h) in TC neurons critically depends on HCN1/HCN2 heterodimers. It is concluded that the reciprocal modulation of I (h) and I (TASK) is an important mechanism of halothane action in the thalamus.
doi_str_mv 10.1007/s00424-008-0482-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_69447649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69447649</sourcerecordid><originalsourceid>FETCH-LOGICAL-p547-e8e993e8da4ee1a2e67b3c49c3938fb5f427545454161bfa6c5ae3656e149df43</originalsourceid><addsrcrecordid>eNo1kD1PwzAQhj2AaCn8ABbkCdHBYMcXf4xVxUdFJSTIwhQ5zkUNSuISJ0P_PakouuE96X3u9N4RciP4g-BcP0bOIQHGuWEcTMLsGZlzLgVTWpkZuYzxm3OeTNYFmQkD2iSpnpOvD_T1vg_eNbQN5di4oQ4dDRXd0PvdkrquPHbZ6vNtSeuODjvXuDb40A_1cabHxh1oh2MfukiLA538MEEdXpHzyjURr0-6INnzU7Z-Zdv3l816tWX7FDRDg9ZKNKUDROESVLqQHqyXVpqqSCtIdArHEkoUlVM-dShVqlCALSuQC3L3t3Y64mfEOORtHT02zRQhjDFXFkArsBN4ewLHosUy3_d16_pD_v8L-QsD_l4J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69447649</pqid></control><display><type>article</type><title>Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Budde, Thomas ; Coulon, Philippe ; Pawlowski, Matthias ; Meuth, Patrick ; Kanyshkova, Tatyana ; Japes, Ansgar ; Meuth, Sven G ; Pape, Hans-Christian</creator><creatorcontrib>Budde, Thomas ; Coulon, Philippe ; Pawlowski, Matthias ; Meuth, Patrick ; Kanyshkova, Tatyana ; Japes, Ansgar ; Meuth, Sven G ; Pape, Hans-Christian</creatorcontrib><description>By combining electrophysiological, immunohistochemical, and computer modeling techniques, we examined the effects of halothane on the standing outward current (I (SO)) and the hyperpolarization-activated current (I (h)) in rat thalamocortical relay (TC) neurons of the dorsal lateral geniculate nucleus (dLGN). Hyperpolarizing voltage steps elicited an instantaneous current component (I (i)) followed by a slower time-dependent current that represented I (h). Halothane reduced I (h) by shifting the voltage dependency of activation toward more negative potentials and by reducing the maximal conductance. Moreover, halothane augmented I (i) and I (SO). During the blockade of I (h) through Cs+, the current-voltage relationship of the halothane-sensitive current closely resembled the properties of a current through members of the TWIK-related acid-sensitive K+ (TASK) channel family (I (TASK)). Computer simulations in a single-compartment TC neuron model demonstrated that the modulation of I (h) and I (TASK) is sufficient to explain the halothane-induced hyperpolarization of the membrane potential observed in current clamp recordings. Immunohistochemical staining revealed protein expression of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel proteins HCN1, HCN2, and HCN4. Together with the dual effect of halothane on I (h) properties, these results suggest that I (h) in TC neurons critically depends on HCN1/HCN2 heterodimers. It is concluded that the reciprocal modulation of I (h) and I (TASK) is an important mechanism of halothane action in the thalamus.</description><identifier>ISSN: 0031-6768</identifier><identifier>DOI: 10.1007/s00424-008-0482-9</identifier><identifier>PMID: 18478257</identifier><language>eng</language><publisher>Germany</publisher><subject>Anesthetics, Inhalation - pharmacology ; Animals ; Cerebral Cortex - cytology ; Cerebral Cortex - drug effects ; Computer Simulation ; Cyclic Nucleotide-Gated Cation Channels - drug effects ; Electrophysiology ; Extracellular Space - drug effects ; Extracellular Space - physiology ; Halothane - pharmacology ; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels ; Immunohistochemistry ; Neural Networks (Computer) ; Neural Pathways - cytology ; Neural Pathways - drug effects ; Neurons - drug effects ; Patch-Clamp Techniques ; Potassium Channels - drug effects ; Potassium Channels, Tandem Pore Domain - drug effects ; Rats ; Rats, Long-Evans ; Thalamus - cytology ; Thalamus - drug effects</subject><ispartof>Pflügers Archiv, 2008-09, Vol.456 (6), p.1061-1073</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18478257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Budde, Thomas</creatorcontrib><creatorcontrib>Coulon, Philippe</creatorcontrib><creatorcontrib>Pawlowski, Matthias</creatorcontrib><creatorcontrib>Meuth, Patrick</creatorcontrib><creatorcontrib>Kanyshkova, Tatyana</creatorcontrib><creatorcontrib>Japes, Ansgar</creatorcontrib><creatorcontrib>Meuth, Sven G</creatorcontrib><creatorcontrib>Pape, Hans-Christian</creatorcontrib><title>Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch</addtitle><description>By combining electrophysiological, immunohistochemical, and computer modeling techniques, we examined the effects of halothane on the standing outward current (I (SO)) and the hyperpolarization-activated current (I (h)) in rat thalamocortical relay (TC) neurons of the dorsal lateral geniculate nucleus (dLGN). Hyperpolarizing voltage steps elicited an instantaneous current component (I (i)) followed by a slower time-dependent current that represented I (h). Halothane reduced I (h) by shifting the voltage dependency of activation toward more negative potentials and by reducing the maximal conductance. Moreover, halothane augmented I (i) and I (SO). During the blockade of I (h) through Cs+, the current-voltage relationship of the halothane-sensitive current closely resembled the properties of a current through members of the TWIK-related acid-sensitive K+ (TASK) channel family (I (TASK)). Computer simulations in a single-compartment TC neuron model demonstrated that the modulation of I (h) and I (TASK) is sufficient to explain the halothane-induced hyperpolarization of the membrane potential observed in current clamp recordings. Immunohistochemical staining revealed protein expression of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel proteins HCN1, HCN2, and HCN4. Together with the dual effect of halothane on I (h) properties, these results suggest that I (h) in TC neurons critically depends on HCN1/HCN2 heterodimers. It is concluded that the reciprocal modulation of I (h) and I (TASK) is an important mechanism of halothane action in the thalamus.</description><subject>Anesthetics, Inhalation - pharmacology</subject><subject>Animals</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - drug effects</subject><subject>Computer Simulation</subject><subject>Cyclic Nucleotide-Gated Cation Channels - drug effects</subject><subject>Electrophysiology</subject><subject>Extracellular Space - drug effects</subject><subject>Extracellular Space - physiology</subject><subject>Halothane - pharmacology</subject><subject>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels</subject><subject>Immunohistochemistry</subject><subject>Neural Networks (Computer)</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - drug effects</subject><subject>Neurons - drug effects</subject><subject>Patch-Clamp Techniques</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels, Tandem Pore Domain - drug effects</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Thalamus - cytology</subject><subject>Thalamus - drug effects</subject><issn>0031-6768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kD1PwzAQhj2AaCn8ABbkCdHBYMcXf4xVxUdFJSTIwhQ5zkUNSuISJ0P_PakouuE96X3u9N4RciP4g-BcP0bOIQHGuWEcTMLsGZlzLgVTWpkZuYzxm3OeTNYFmQkD2iSpnpOvD_T1vg_eNbQN5di4oQ4dDRXd0PvdkrquPHbZ6vNtSeuODjvXuDb40A_1cabHxh1oh2MfukiLA538MEEdXpHzyjURr0-6INnzU7Z-Zdv3l816tWX7FDRDg9ZKNKUDROESVLqQHqyXVpqqSCtIdArHEkoUlVM-dShVqlCALSuQC3L3t3Y64mfEOORtHT02zRQhjDFXFkArsBN4ewLHosUy3_d16_pD_v8L-QsD_l4J</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Budde, Thomas</creator><creator>Coulon, Philippe</creator><creator>Pawlowski, Matthias</creator><creator>Meuth, Patrick</creator><creator>Kanyshkova, Tatyana</creator><creator>Japes, Ansgar</creator><creator>Meuth, Sven G</creator><creator>Pape, Hans-Christian</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200809</creationdate><title>Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane</title><author>Budde, Thomas ; Coulon, Philippe ; Pawlowski, Matthias ; Meuth, Patrick ; Kanyshkova, Tatyana ; Japes, Ansgar ; Meuth, Sven G ; Pape, Hans-Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p547-e8e993e8da4ee1a2e67b3c49c3938fb5f427545454161bfa6c5ae3656e149df43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Anesthetics, Inhalation - pharmacology</topic><topic>Animals</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - drug effects</topic><topic>Computer Simulation</topic><topic>Cyclic Nucleotide-Gated Cation Channels - drug effects</topic><topic>Electrophysiology</topic><topic>Extracellular Space - drug effects</topic><topic>Extracellular Space - physiology</topic><topic>Halothane - pharmacology</topic><topic>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels</topic><topic>Immunohistochemistry</topic><topic>Neural Networks (Computer)</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - drug effects</topic><topic>Neurons - drug effects</topic><topic>Patch-Clamp Techniques</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels, Tandem Pore Domain - drug effects</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Thalamus - cytology</topic><topic>Thalamus - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budde, Thomas</creatorcontrib><creatorcontrib>Coulon, Philippe</creatorcontrib><creatorcontrib>Pawlowski, Matthias</creatorcontrib><creatorcontrib>Meuth, Patrick</creatorcontrib><creatorcontrib>Kanyshkova, Tatyana</creatorcontrib><creatorcontrib>Japes, Ansgar</creatorcontrib><creatorcontrib>Meuth, Sven G</creatorcontrib><creatorcontrib>Pape, Hans-Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budde, Thomas</au><au>Coulon, Philippe</au><au>Pawlowski, Matthias</au><au>Meuth, Patrick</au><au>Kanyshkova, Tatyana</au><au>Japes, Ansgar</au><au>Meuth, Sven G</au><au>Pape, Hans-Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane</atitle><jtitle>Pflügers Archiv</jtitle><addtitle>Pflugers Arch</addtitle><date>2008-09</date><risdate>2008</risdate><volume>456</volume><issue>6</issue><spage>1061</spage><epage>1073</epage><pages>1061-1073</pages><issn>0031-6768</issn><abstract>By combining electrophysiological, immunohistochemical, and computer modeling techniques, we examined the effects of halothane on the standing outward current (I (SO)) and the hyperpolarization-activated current (I (h)) in rat thalamocortical relay (TC) neurons of the dorsal lateral geniculate nucleus (dLGN). Hyperpolarizing voltage steps elicited an instantaneous current component (I (i)) followed by a slower time-dependent current that represented I (h). Halothane reduced I (h) by shifting the voltage dependency of activation toward more negative potentials and by reducing the maximal conductance. Moreover, halothane augmented I (i) and I (SO). During the blockade of I (h) through Cs+, the current-voltage relationship of the halothane-sensitive current closely resembled the properties of a current through members of the TWIK-related acid-sensitive K+ (TASK) channel family (I (TASK)). Computer simulations in a single-compartment TC neuron model demonstrated that the modulation of I (h) and I (TASK) is sufficient to explain the halothane-induced hyperpolarization of the membrane potential observed in current clamp recordings. Immunohistochemical staining revealed protein expression of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel proteins HCN1, HCN2, and HCN4. Together with the dual effect of halothane on I (h) properties, these results suggest that I (h) in TC neurons critically depends on HCN1/HCN2 heterodimers. It is concluded that the reciprocal modulation of I (h) and I (TASK) is an important mechanism of halothane action in the thalamus.</abstract><cop>Germany</cop><pmid>18478257</pmid><doi>10.1007/s00424-008-0482-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-6768
ispartof Pflügers Archiv, 2008-09, Vol.456 (6), p.1061-1073
issn 0031-6768
language eng
recordid cdi_proquest_miscellaneous_69447649
source MEDLINE; Springer Online Journals Complete
subjects Anesthetics, Inhalation - pharmacology
Animals
Cerebral Cortex - cytology
Cerebral Cortex - drug effects
Computer Simulation
Cyclic Nucleotide-Gated Cation Channels - drug effects
Electrophysiology
Extracellular Space - drug effects
Extracellular Space - physiology
Halothane - pharmacology
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
Immunohistochemistry
Neural Networks (Computer)
Neural Pathways - cytology
Neural Pathways - drug effects
Neurons - drug effects
Patch-Clamp Techniques
Potassium Channels - drug effects
Potassium Channels, Tandem Pore Domain - drug effects
Rats
Rats, Long-Evans
Thalamus - cytology
Thalamus - drug effects
title Reciprocal modulation of I (h) and I (TASK) in thalamocortical relay neurons by halothane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reciprocal%20modulation%20of%20I%20(h)%20and%20I%20(TASK)%20in%20thalamocortical%20relay%20neurons%20by%20halothane&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Budde,%20Thomas&rft.date=2008-09&rft.volume=456&rft.issue=6&rft.spage=1061&rft.epage=1073&rft.pages=1061-1073&rft.issn=0031-6768&rft_id=info:doi/10.1007/s00424-008-0482-9&rft_dat=%3Cproquest_pubme%3E69447649%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69447649&rft_id=info:pmid/18478257&rfr_iscdi=true