Mesenchymal differentiation of glioblastoma stem cells

Glioblastoma multiforme is a severe form of cancer most likely arising from the transformation of stem or progenitor cells resident in the brain. Although the tumorigenic population in glioblastoma is defined as composed by cancer stem cells (CSCs), the cellular target of the transformation hit rema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2008-09, Vol.15 (9), p.1491-1498
Hauptverfasser: Ricci-Vitiani, L, Pallini, R, Larocca, L M, Lombardi, D G, Signore, M, Pierconti, F, Petrucci, G, Montano, N, Maira, G, De Maria, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1498
container_issue 9
container_start_page 1491
container_title Cell death and differentiation
container_volume 15
creator Ricci-Vitiani, L
Pallini, R
Larocca, L M
Lombardi, D G
Signore, M
Pierconti, F
Petrucci, G
Montano, N
Maira, G
De Maria, R
description Glioblastoma multiforme is a severe form of cancer most likely arising from the transformation of stem or progenitor cells resident in the brain. Although the tumorigenic population in glioblastoma is defined as composed by cancer stem cells (CSCs), the cellular target of the transformation hit remains to be identified. Glioma stem cells (SCs) are thought to have a differentiation potential restricted to the neural lineage. However, using orthotopic versus heterotopic xenograft models and in vitro differentiation assays, we found that a subset of glioblastomas contained CSCs with both neural and mesenchymal potential. Subcutaneous injection of CSCs or single CSC clones from two of seven patients produced tumor xenografts containing osteo-chondrogenic areas in the context of glioblastoma-like tumor lesions. Moreover, CSC clones from four of seven cases generated both neural and chondrogenic cells in vitro . Interestingly, mesenchymal differentiation of the tumor xenografts was associated with reduction of both growth rate and mitotic index. These findings suggest that in a subclass of glioblastomas the tumorigenic hit occurs on a multipotent stem cell, which may reveal its plasticity under specific environmental stimuli. The discovery of such biological properties might provide considerable information to the development of new therapeutic strategies aimed at forcing glioblastoma stem cell differentiation.
doi_str_mv 10.1038/cdd.2008.72
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69438812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534514251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8b6d03d9838625ba06f1912e854bcb3a97f163b386a1a10dafed6d14cf22cc1d3</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgipvTk3ctHrxoZ9Kk-TjK8AsmXvQc0nzMjn7MpD3svzelw4EInhJ4fzzJ-wBwjuAcQczvtDHzDEI-Z9kBmCLCaJoTiA_jHecwFZCwCTgJYQ0hpEzQYzBBnAjGcjEF9NUG2-jPba2qxJTOWW-brlRd2TZJ65JVVbZFpULX1ioJna0TbasqnIIjp6pgz3bnDHw8PrwvntPl29PL4n6ZakJwl_KCGoiN4JjTLC8UpA4JlFmek0IXWAnmEMVFnCqkEDTKWUMNItplmdbI4Bm4HnM3vv3qbehkXYbhB6qxbR8kFQRzjrJ_IRKEw5wP8OoXXLe9b-ISMkOM4dioiOhmRNq3IXjr5MaXtfJbiaAcSpexdDmULtkQebGL7Ivamr3dtRzB7QhCHDUr6_dv_p13OfJGdb23P3nRDCSKb7oolUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217730389</pqid></control><display><type>article</type><title>Mesenchymal differentiation of glioblastoma stem cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ricci-Vitiani, L ; Pallini, R ; Larocca, L M ; Lombardi, D G ; Signore, M ; Pierconti, F ; Petrucci, G ; Montano, N ; Maira, G ; De Maria, R</creator><creatorcontrib>Ricci-Vitiani, L ; Pallini, R ; Larocca, L M ; Lombardi, D G ; Signore, M ; Pierconti, F ; Petrucci, G ; Montano, N ; Maira, G ; De Maria, R</creatorcontrib><description>Glioblastoma multiforme is a severe form of cancer most likely arising from the transformation of stem or progenitor cells resident in the brain. Although the tumorigenic population in glioblastoma is defined as composed by cancer stem cells (CSCs), the cellular target of the transformation hit remains to be identified. Glioma stem cells (SCs) are thought to have a differentiation potential restricted to the neural lineage. However, using orthotopic versus heterotopic xenograft models and in vitro differentiation assays, we found that a subset of glioblastomas contained CSCs with both neural and mesenchymal potential. Subcutaneous injection of CSCs or single CSC clones from two of seven patients produced tumor xenografts containing osteo-chondrogenic areas in the context of glioblastoma-like tumor lesions. Moreover, CSC clones from four of seven cases generated both neural and chondrogenic cells in vitro . Interestingly, mesenchymal differentiation of the tumor xenografts was associated with reduction of both growth rate and mitotic index. These findings suggest that in a subclass of glioblastomas the tumorigenic hit occurs on a multipotent stem cell, which may reveal its plasticity under specific environmental stimuli. The discovery of such biological properties might provide considerable information to the development of new therapeutic strategies aimed at forcing glioblastoma stem cell differentiation.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2008.72</identifier><identifier>PMID: 18497759</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adult ; Aged ; Animals ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Brain cancer ; Brain Neoplasms - pathology ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Cell Differentiation ; Clone Cells ; Cloning ; Epidermal growth factor ; Female ; Genotype &amp; phenotype ; Glioblastoma - pathology ; Hematology ; Humans ; Life Sciences ; Male ; Mesoderm - cytology ; Mice ; Mice, SCID ; Middle Aged ; Mutation ; Neoplastic Stem Cells - chemistry ; Neoplastic Stem Cells - cytology ; Neoplastic Stem Cells - pathology ; Neurons - cytology ; Oncology ; original-paper ; Stem Cells ; Tumors ; Xenograft Model Antitumor Assays</subject><ispartof>Cell death and differentiation, 2008-09, Vol.15 (9), p.1491-1498</ispartof><rights>Springer Nature Limited 2008</rights><rights>Copyright Nature Publishing Group Sep 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8b6d03d9838625ba06f1912e854bcb3a97f163b386a1a10dafed6d14cf22cc1d3</citedby><cites>FETCH-LOGICAL-c443t-8b6d03d9838625ba06f1912e854bcb3a97f163b386a1a10dafed6d14cf22cc1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/cdd.2008.72$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/cdd.2008.72$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18497759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ricci-Vitiani, L</creatorcontrib><creatorcontrib>Pallini, R</creatorcontrib><creatorcontrib>Larocca, L M</creatorcontrib><creatorcontrib>Lombardi, D G</creatorcontrib><creatorcontrib>Signore, M</creatorcontrib><creatorcontrib>Pierconti, F</creatorcontrib><creatorcontrib>Petrucci, G</creatorcontrib><creatorcontrib>Montano, N</creatorcontrib><creatorcontrib>Maira, G</creatorcontrib><creatorcontrib>De Maria, R</creatorcontrib><title>Mesenchymal differentiation of glioblastoma stem cells</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Glioblastoma multiforme is a severe form of cancer most likely arising from the transformation of stem or progenitor cells resident in the brain. Although the tumorigenic population in glioblastoma is defined as composed by cancer stem cells (CSCs), the cellular target of the transformation hit remains to be identified. Glioma stem cells (SCs) are thought to have a differentiation potential restricted to the neural lineage. However, using orthotopic versus heterotopic xenograft models and in vitro differentiation assays, we found that a subset of glioblastomas contained CSCs with both neural and mesenchymal potential. Subcutaneous injection of CSCs or single CSC clones from two of seven patients produced tumor xenografts containing osteo-chondrogenic areas in the context of glioblastoma-like tumor lesions. Moreover, CSC clones from four of seven cases generated both neural and chondrogenic cells in vitro . Interestingly, mesenchymal differentiation of the tumor xenografts was associated with reduction of both growth rate and mitotic index. These findings suggest that in a subclass of glioblastomas the tumorigenic hit occurs on a multipotent stem cell, which may reveal its plasticity under specific environmental stimuli. The discovery of such biological properties might provide considerable information to the development of new therapeutic strategies aimed at forcing glioblastoma stem cell differentiation.</description><subject>Adult</subject><subject>Aged</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Cell Differentiation</subject><subject>Clone Cells</subject><subject>Cloning</subject><subject>Epidermal growth factor</subject><subject>Female</subject><subject>Genotype &amp; phenotype</subject><subject>Glioblastoma - pathology</subject><subject>Hematology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mesoderm - cytology</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Neoplastic Stem Cells - chemistry</subject><subject>Neoplastic Stem Cells - cytology</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Neurons - cytology</subject><subject>Oncology</subject><subject>original-paper</subject><subject>Stem Cells</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M1LwzAYBvAgipvTk3ctHrxoZ9Kk-TjK8AsmXvQc0nzMjn7MpD3svzelw4EInhJ4fzzJ-wBwjuAcQczvtDHzDEI-Z9kBmCLCaJoTiA_jHecwFZCwCTgJYQ0hpEzQYzBBnAjGcjEF9NUG2-jPba2qxJTOWW-brlRd2TZJ65JVVbZFpULX1ioJna0TbasqnIIjp6pgz3bnDHw8PrwvntPl29PL4n6ZakJwl_KCGoiN4JjTLC8UpA4JlFmek0IXWAnmEMVFnCqkEDTKWUMNItplmdbI4Bm4HnM3vv3qbehkXYbhB6qxbR8kFQRzjrJ_IRKEw5wP8OoXXLe9b-ISMkOM4dioiOhmRNq3IXjr5MaXtfJbiaAcSpexdDmULtkQebGL7Ivamr3dtRzB7QhCHDUr6_dv_p13OfJGdb23P3nRDCSKb7oolUE</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Ricci-Vitiani, L</creator><creator>Pallini, R</creator><creator>Larocca, L M</creator><creator>Lombardi, D G</creator><creator>Signore, M</creator><creator>Pierconti, F</creator><creator>Petrucci, G</creator><creator>Montano, N</creator><creator>Maira, G</creator><creator>De Maria, R</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20080901</creationdate><title>Mesenchymal differentiation of glioblastoma stem cells</title><author>Ricci-Vitiani, L ; Pallini, R ; Larocca, L M ; Lombardi, D G ; Signore, M ; Pierconti, F ; Petrucci, G ; Montano, N ; Maira, G ; De Maria, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8b6d03d9838625ba06f1912e854bcb3a97f163b386a1a10dafed6d14cf22cc1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Cell Differentiation</topic><topic>Clone Cells</topic><topic>Cloning</topic><topic>Epidermal growth factor</topic><topic>Female</topic><topic>Genotype &amp; phenotype</topic><topic>Glioblastoma - pathology</topic><topic>Hematology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mesoderm - cytology</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Neoplastic Stem Cells - chemistry</topic><topic>Neoplastic Stem Cells - cytology</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Neurons - cytology</topic><topic>Oncology</topic><topic>original-paper</topic><topic>Stem Cells</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ricci-Vitiani, L</creatorcontrib><creatorcontrib>Pallini, R</creatorcontrib><creatorcontrib>Larocca, L M</creatorcontrib><creatorcontrib>Lombardi, D G</creatorcontrib><creatorcontrib>Signore, M</creatorcontrib><creatorcontrib>Pierconti, F</creatorcontrib><creatorcontrib>Petrucci, G</creatorcontrib><creatorcontrib>Montano, N</creatorcontrib><creatorcontrib>Maira, G</creatorcontrib><creatorcontrib>De Maria, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ricci-Vitiani, L</au><au>Pallini, R</au><au>Larocca, L M</au><au>Lombardi, D G</au><au>Signore, M</au><au>Pierconti, F</au><au>Petrucci, G</au><au>Montano, N</au><au>Maira, G</au><au>De Maria, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesenchymal differentiation of glioblastoma stem cells</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>15</volume><issue>9</issue><spage>1491</spage><epage>1498</epage><pages>1491-1498</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Glioblastoma multiforme is a severe form of cancer most likely arising from the transformation of stem or progenitor cells resident in the brain. Although the tumorigenic population in glioblastoma is defined as composed by cancer stem cells (CSCs), the cellular target of the transformation hit remains to be identified. Glioma stem cells (SCs) are thought to have a differentiation potential restricted to the neural lineage. However, using orthotopic versus heterotopic xenograft models and in vitro differentiation assays, we found that a subset of glioblastomas contained CSCs with both neural and mesenchymal potential. Subcutaneous injection of CSCs or single CSC clones from two of seven patients produced tumor xenografts containing osteo-chondrogenic areas in the context of glioblastoma-like tumor lesions. Moreover, CSC clones from four of seven cases generated both neural and chondrogenic cells in vitro . Interestingly, mesenchymal differentiation of the tumor xenografts was associated with reduction of both growth rate and mitotic index. These findings suggest that in a subclass of glioblastomas the tumorigenic hit occurs on a multipotent stem cell, which may reveal its plasticity under specific environmental stimuli. The discovery of such biological properties might provide considerable information to the development of new therapeutic strategies aimed at forcing glioblastoma stem cell differentiation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18497759</pmid><doi>10.1038/cdd.2008.72</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2008-09, Vol.15 (9), p.1491-1498
issn 1350-9047
1476-5403
language eng
recordid cdi_proquest_miscellaneous_69438812
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects Adult
Aged
Animals
Apoptosis
Biochemistry
Biomedical and Life Sciences
Brain cancer
Brain Neoplasms - pathology
Cell Biology
Cell Cycle Analysis
Cell death
Cell Differentiation
Clone Cells
Cloning
Epidermal growth factor
Female
Genotype & phenotype
Glioblastoma - pathology
Hematology
Humans
Life Sciences
Male
Mesoderm - cytology
Mice
Mice, SCID
Middle Aged
Mutation
Neoplastic Stem Cells - chemistry
Neoplastic Stem Cells - cytology
Neoplastic Stem Cells - pathology
Neurons - cytology
Oncology
original-paper
Stem Cells
Tumors
Xenograft Model Antitumor Assays
title Mesenchymal differentiation of glioblastoma stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesenchymal%20differentiation%20of%20glioblastoma%20stem%20cells&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Ricci-Vitiani,%20L&rft.date=2008-09-01&rft.volume=15&rft.issue=9&rft.spage=1491&rft.epage=1498&rft.pages=1491-1498&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2008.72&rft_dat=%3Cproquest_cross%3E1534514251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217730389&rft_id=info:pmid/18497759&rfr_iscdi=true