Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention

The fusion of tracked ultrasound with CT has benefits for a variety of clinical applications, however extensive manual effort is usually required for correct registration. We developed new methods that allow one to simulate medical ultrasound from CT in real-time, reproducing the majority of ultraso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2008-10, Vol.12 (5), p.577-585
Hauptverfasser: Wein, Wolfgang, Brunke, Shelby, Khamene, Ali, Callstrom, Matthew R., Navab, Nassir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 5
container_start_page 577
container_title Medical image analysis
container_volume 12
creator Wein, Wolfgang
Brunke, Shelby
Khamene, Ali
Callstrom, Matthew R.
Navab, Nassir
description The fusion of tracked ultrasound with CT has benefits for a variety of clinical applications, however extensive manual effort is usually required for correct registration. We developed new methods that allow one to simulate medical ultrasound from CT in real-time, reproducing the majority of ultrasonic imaging effects. They are combined with a robust similarity measure that assesses the correlation of a combination of signals extracted from CT with ultrasound, without knowing the influence of each signal. This serves as the foundation of a fully automatic registration, that aligns a 3D ultrasound sweep with the corresponding tomographic modality using a rigid or an affine transformation model, without any manual interaction. These techniques were evaluated in a study involving 25 patients with indeterminate lesions in liver and kidney. The clinical setup, acquisition and registration workflow is described, along with the evaluation of the registration accuracy with respect to physician-defined Ground Truth. Our new algorithm correctly registers without any manual interaction in 76% of the cases, the average RMS TRE over multiple target lesions throughout the liver is 8.1 mm.
doi_str_mv 10.1016/j.media.2008.06.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69416780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841508000637</els_id><sourcerecordid>21035501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-ecb3262bf4ad1def4470bb2f13a71712e4d40396ec88a62775f81846cb39239f3</originalsourceid><addsrcrecordid>eNqFkD1v2zAQhomgRb7aXxAg0JRN6h1JUfLQwTDyBRjo4gyZCIo6CTRs0SWlAP33pWKj2dKJd-Dz3uEexm4QCgRUP7bFnlpnCg5QF6AKAHXGLlEozGvJxZd_NZYX7CrGLQBUUsI5u8BalYAcL9nrchr93ozOZqtNPu3GYKKfhjYL1LuYutH5Iet8yNKqfvBxJt3e9G7oM5O4uaa8n1xLqRlGCm80zKFv7GtndpG-n95r9vJwv1k95etfj8-r5Tq3spRjTrYRXPGmk6bFljopK2ga3qEwFVbISbYSxEKRrWujeFWVXY21VCm24GLRiWt2d5x7CP73RHHUexct7XZmID9FrRYSVVXDf0GOIMqkJYHiCNrgYwzU6UNIZ4Y_GkHP6vVWv6vXs3oNSif1KXV7Gj816fcjc3KdgJ9HgJKNN0dBR-tosGlSIDvq1rtPF_wF_4SWdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21035501</pqid></control><display><type>article</type><title>Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wein, Wolfgang ; Brunke, Shelby ; Khamene, Ali ; Callstrom, Matthew R. ; Navab, Nassir</creator><creatorcontrib>Wein, Wolfgang ; Brunke, Shelby ; Khamene, Ali ; Callstrom, Matthew R. ; Navab, Nassir</creatorcontrib><description>The fusion of tracked ultrasound with CT has benefits for a variety of clinical applications, however extensive manual effort is usually required for correct registration. We developed new methods that allow one to simulate medical ultrasound from CT in real-time, reproducing the majority of ultrasonic imaging effects. They are combined with a robust similarity measure that assesses the correlation of a combination of signals extracted from CT with ultrasound, without knowing the influence of each signal. This serves as the foundation of a fully automatic registration, that aligns a 3D ultrasound sweep with the corresponding tomographic modality using a rigid or an affine transformation model, without any manual interaction. These techniques were evaluated in a study involving 25 patients with indeterminate lesions in liver and kidney. The clinical setup, acquisition and registration workflow is described, along with the evaluation of the registration accuracy with respect to physician-defined Ground Truth. Our new algorithm correctly registers without any manual interaction in 76% of the cases, the average RMS TRE over multiple target lesions throughout the liver is 8.1 mm.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2008.06.006</identifier><identifier>PMID: 18650121</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Artificial Intelligence ; Fusion ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image-guided Intervention ; Kidney Neoplasms - diagnosis ; Kidney Neoplasms - surgery ; Liver Neoplasms - diagnosis ; Liver Neoplasms - surgery ; Pattern Recognition, Automated - methods ; Registration ; Surgery, Computer-Assisted - methods ; Tomography, X-Ray Computed - methods ; Ultrasonography - methods ; Ultrasound</subject><ispartof>Medical image analysis, 2008-10, Vol.12 (5), p.577-585</ispartof><rights>2008 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-ecb3262bf4ad1def4470bb2f13a71712e4d40396ec88a62775f81846cb39239f3</citedby><cites>FETCH-LOGICAL-c454t-ecb3262bf4ad1def4470bb2f13a71712e4d40396ec88a62775f81846cb39239f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841508000637$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18650121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wein, Wolfgang</creatorcontrib><creatorcontrib>Brunke, Shelby</creatorcontrib><creatorcontrib>Khamene, Ali</creatorcontrib><creatorcontrib>Callstrom, Matthew R.</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><title>Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>The fusion of tracked ultrasound with CT has benefits for a variety of clinical applications, however extensive manual effort is usually required for correct registration. We developed new methods that allow one to simulate medical ultrasound from CT in real-time, reproducing the majority of ultrasonic imaging effects. They are combined with a robust similarity measure that assesses the correlation of a combination of signals extracted from CT with ultrasound, without knowing the influence of each signal. This serves as the foundation of a fully automatic registration, that aligns a 3D ultrasound sweep with the corresponding tomographic modality using a rigid or an affine transformation model, without any manual interaction. These techniques were evaluated in a study involving 25 patients with indeterminate lesions in liver and kidney. The clinical setup, acquisition and registration workflow is described, along with the evaluation of the registration accuracy with respect to physician-defined Ground Truth. Our new algorithm correctly registers without any manual interaction in 76% of the cases, the average RMS TRE over multiple target lesions throughout the liver is 8.1 mm.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Fusion</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image-guided Intervention</subject><subject>Kidney Neoplasms - diagnosis</subject><subject>Kidney Neoplasms - surgery</subject><subject>Liver Neoplasms - diagnosis</subject><subject>Liver Neoplasms - surgery</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Registration</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1v2zAQhomgRb7aXxAg0JRN6h1JUfLQwTDyBRjo4gyZCIo6CTRs0SWlAP33pWKj2dKJd-Dz3uEexm4QCgRUP7bFnlpnCg5QF6AKAHXGLlEozGvJxZd_NZYX7CrGLQBUUsI5u8BalYAcL9nrchr93ozOZqtNPu3GYKKfhjYL1LuYutH5Iet8yNKqfvBxJt3e9G7oM5O4uaa8n1xLqRlGCm80zKFv7GtndpG-n95r9vJwv1k95etfj8-r5Tq3spRjTrYRXPGmk6bFljopK2ga3qEwFVbISbYSxEKRrWujeFWVXY21VCm24GLRiWt2d5x7CP73RHHUexct7XZmID9FrRYSVVXDf0GOIMqkJYHiCNrgYwzU6UNIZ4Y_GkHP6vVWv6vXs3oNSif1KXV7Gj816fcjc3KdgJ9HgJKNN0dBR-tosGlSIDvq1rtPF_wF_4SWdQ</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Wein, Wolfgang</creator><creator>Brunke, Shelby</creator><creator>Khamene, Ali</creator><creator>Callstrom, Matthew R.</creator><creator>Navab, Nassir</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20081001</creationdate><title>Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention</title><author>Wein, Wolfgang ; Brunke, Shelby ; Khamene, Ali ; Callstrom, Matthew R. ; Navab, Nassir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-ecb3262bf4ad1def4470bb2f13a71712e4d40396ec88a62775f81846cb39239f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Fusion</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image-guided Intervention</topic><topic>Kidney Neoplasms - diagnosis</topic><topic>Kidney Neoplasms - surgery</topic><topic>Liver Neoplasms - diagnosis</topic><topic>Liver Neoplasms - surgery</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Registration</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wein, Wolfgang</creatorcontrib><creatorcontrib>Brunke, Shelby</creatorcontrib><creatorcontrib>Khamene, Ali</creatorcontrib><creatorcontrib>Callstrom, Matthew R.</creatorcontrib><creatorcontrib>Navab, Nassir</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wein, Wolfgang</au><au>Brunke, Shelby</au><au>Khamene, Ali</au><au>Callstrom, Matthew R.</au><au>Navab, Nassir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>12</volume><issue>5</issue><spage>577</spage><epage>585</epage><pages>577-585</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>The fusion of tracked ultrasound with CT has benefits for a variety of clinical applications, however extensive manual effort is usually required for correct registration. We developed new methods that allow one to simulate medical ultrasound from CT in real-time, reproducing the majority of ultrasonic imaging effects. They are combined with a robust similarity measure that assesses the correlation of a combination of signals extracted from CT with ultrasound, without knowing the influence of each signal. This serves as the foundation of a fully automatic registration, that aligns a 3D ultrasound sweep with the corresponding tomographic modality using a rigid or an affine transformation model, without any manual interaction. These techniques were evaluated in a study involving 25 patients with indeterminate lesions in liver and kidney. The clinical setup, acquisition and registration workflow is described, along with the evaluation of the registration accuracy with respect to physician-defined Ground Truth. Our new algorithm correctly registers without any manual interaction in 76% of the cases, the average RMS TRE over multiple target lesions throughout the liver is 8.1 mm.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>18650121</pmid><doi>10.1016/j.media.2008.06.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2008-10, Vol.12 (5), p.577-585
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_69416780
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Artificial Intelligence
Fusion
Humans
Image Interpretation, Computer-Assisted - methods
Image-guided Intervention
Kidney Neoplasms - diagnosis
Kidney Neoplasms - surgery
Liver Neoplasms - diagnosis
Liver Neoplasms - surgery
Pattern Recognition, Automated - methods
Registration
Surgery, Computer-Assisted - methods
Tomography, X-Ray Computed - methods
Ultrasonography - methods
Ultrasound
title Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20CT-ultrasound%20registration%20for%20diagnostic%20imaging%20and%20image-guided%20intervention&rft.jtitle=Medical%20image%20analysis&rft.au=Wein,%20Wolfgang&rft.date=2008-10-01&rft.volume=12&rft.issue=5&rft.spage=577&rft.epage=585&rft.pages=577-585&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2008.06.006&rft_dat=%3Cproquest_cross%3E21035501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21035501&rft_id=info:pmid/18650121&rft_els_id=S1361841508000637&rfr_iscdi=true