Electrochemical Behavior of Ascorbic Acid at a 2,2′-[3,6-Dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone Carbon Paste Electrode
Electrocatalytic oxidation of ascorbic acid (AA) at a carbon paste electrode, chemically modified 2,2′-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone, was thoroughly investigated. The results of cyclic voltammetry, double potential-step chronoamperometry, linear sweep voltammetry...
Gespeichert in:
Veröffentlicht in: | Analytical Sciences 2008/08/10, Vol.24(8), pp.1039-1044 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrocatalytic oxidation of ascorbic acid (AA) at a carbon paste electrode, chemically modified 2,2′-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone, was thoroughly investigated. The results of cyclic voltammetry, double potential-step chronoamperometry, linear sweep voltammetry and differential pulse voltammetry (DPV) studies were used for the prediction of the mechanism of electrochemical oxidation of AA mediated with 2,2′-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone at the surface of the modified electrode. The diffusion coefficient (D = 2.45 × 10-5 cm2 s-1) and the kinetic parameters such as the electron transfer coefficient (α = 0.34) were also determined. The results of DPV using the 2,2′-[3,6-dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-hydroquinone-modified electrode were applied in a highly sensitive determination of AA in drug samples. A linear range of 3.0 × 10-6 - 1.2 × 10-4 M and the detection limit (3σ) 3.8 × 10-7 M were obtained for DPV determination of AA in buffered pH 7.00 solutions (0.1 M phosphate buffer). |
---|---|
ISSN: | 0910-6340 1348-2246 |
DOI: | 10.2116/analsci.24.1039 |