Physicochemical stability of phospholipid-dispersed suspensions of crystalline itraconazole

The physicochemical stability of an aqueous, phospholipid-based dispersion of itraconazole microcrystals was studied as a model water-insoluble drug suspension. The particle size, phospholipid concentrations, free fatty acid (FFA) content, pH, and zeta potential of two test suspensions were followed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmaceutics and biopharmaceutics 2008-08, Vol.69 (3), p.1104-1113
Hauptverfasser: Werling, Jane, Graham, Sabine, Owen, Heather, Nair, Lakshmy, Gonyon, Thomas, Carter, Phillip W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1113
container_issue 3
container_start_page 1104
container_title European journal of pharmaceutics and biopharmaceutics
container_volume 69
creator Werling, Jane
Graham, Sabine
Owen, Heather
Nair, Lakshmy
Gonyon, Thomas
Carter, Phillip W.
description The physicochemical stability of an aqueous, phospholipid-based dispersion of itraconazole microcrystals was studied as a model water-insoluble drug suspension. The particle size, phospholipid concentrations, free fatty acid (FFA) content, pH, and zeta potential of two test suspensions were followed over 63 days at 5 and 40 °C storage conditions. Hydrolysis of a control suspension containing Lipoid E80 led to rapid FFA formation, pH drop, and subsequent particle aggregation. In the second suspension, sodium oleate used in conjunction with Lipoid E80 significantly enhanced the suspension physicochemical stability. Oleate anions effectively (1) increased the anionic charge of the phospholipid surface layer, (2) buffered the suspension near pH 7, and (3) reduced the specific production of oleic acid as a phosphatidylcholine (PC) degradant. The observed hydrolysis rate constants k obs ∼ 2 × 10 −7 (Lipoid only) and k obs ∼ 5 × 10 −8 (Lipoid and oleate) were consistent with the pH dependent behavior reported for saturated soybean PC solutions. Mechanistically, FFA formed initially in the control suspension partitioned to the aqueous phase with limited influence on the phospholipid microenvironment at the itraconazole particle surface. Phospholipid stabilization of water-insoluble drugs was demonstrated with clear benefits from fatty acid anions as co-additives to influence the surface microenvironment, reduce hydrolysis kinetics, and enhance suspension physicochemical stability.
doi_str_mv 10.1016/j.ejpb.2008.01.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69383716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0939641108000362</els_id><sourcerecordid>69383716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-16d2ccdf357a2dfe2d66c72ffa850ec9bee212d34cbed6ef60d392ab7c22c4ff3</originalsourceid><addsrcrecordid>eNp9kD2P1DAQhi0E4paDP0CB0kCX4I_ESSQadOJLOgkKqCgsZzzWeuWNgyd70vLrcbQr6ChGM8Xzvho9jL0UvBFc6LeHBg_L1EjOh4aLhiv-iO3E0Ktata14zHZ8VGOtWyFu2DOiA-e87bvhKbsRQ8t1N-gd-_ltf6YACfZ4DGBjRaudQgzruUq-WvaJysSwBFe7QAtmQlfRqVwzhTTTRkE-l1SMYcYqrNlCmu3vFPE5e-JtJHxx3bfsx8cP3-8-1_dfP325e39fQ9vxtRbaSQDnVddb6TxKpzX00ns7dBxhnBClkE61MKHT6DV3apR26kFKaL1Xt-zNpXfJ6dcJaTXHQIAx2hnTiYwe1aB6oQsoLyDkRJTRmyWHo81nI7jZlJqD2ZSaTanhwhSlJfTq2n6ajuj-Ra4OC_D6ClgqBn22MwT6y0nejaprN-7dhcPi4iFgNgQBZ0AXMsJqXAr_--MPGgiYlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69383716</pqid></control><display><type>article</type><title>Physicochemical stability of phospholipid-dispersed suspensions of crystalline itraconazole</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Werling, Jane ; Graham, Sabine ; Owen, Heather ; Nair, Lakshmy ; Gonyon, Thomas ; Carter, Phillip W.</creator><creatorcontrib>Werling, Jane ; Graham, Sabine ; Owen, Heather ; Nair, Lakshmy ; Gonyon, Thomas ; Carter, Phillip W.</creatorcontrib><description>The physicochemical stability of an aqueous, phospholipid-based dispersion of itraconazole microcrystals was studied as a model water-insoluble drug suspension. The particle size, phospholipid concentrations, free fatty acid (FFA) content, pH, and zeta potential of two test suspensions were followed over 63 days at 5 and 40 °C storage conditions. Hydrolysis of a control suspension containing Lipoid E80 led to rapid FFA formation, pH drop, and subsequent particle aggregation. In the second suspension, sodium oleate used in conjunction with Lipoid E80 significantly enhanced the suspension physicochemical stability. Oleate anions effectively (1) increased the anionic charge of the phospholipid surface layer, (2) buffered the suspension near pH 7, and (3) reduced the specific production of oleic acid as a phosphatidylcholine (PC) degradant. The observed hydrolysis rate constants k obs ∼ 2 × 10 −7 (Lipoid only) and k obs ∼ 5 × 10 −8 (Lipoid and oleate) were consistent with the pH dependent behavior reported for saturated soybean PC solutions. Mechanistically, FFA formed initially in the control suspension partitioned to the aqueous phase with limited influence on the phospholipid microenvironment at the itraconazole particle surface. Phospholipid stabilization of water-insoluble drugs was demonstrated with clear benefits from fatty acid anions as co-additives to influence the surface microenvironment, reduce hydrolysis kinetics, and enhance suspension physicochemical stability.</description><identifier>ISSN: 0939-6411</identifier><identifier>EISSN: 1873-3441</identifier><identifier>DOI: 10.1016/j.ejpb.2008.01.030</identifier><identifier>PMID: 18406586</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antifungal Agents - administration &amp; dosage ; Antifungal Agents - chemistry ; Biological and medical sciences ; Chemical Phenomena ; Chemistry, Physical ; Crystalline suspensions ; Crystallization ; Drug Stability ; Electrochemistry ; Excipients ; Fatty Acids, Nonesterified - chemistry ; General pharmacology ; Hydrogen-Ion Concentration ; Hydrolysis ; Itraconazole ; Itraconazole - administration &amp; dosage ; Itraconazole - chemistry ; Lecithins - chemistry ; Medical sciences ; Oleate ; Particle Size ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Phospholipid ; Phospholipids - chemistry ; Physicochemical stability ; Suspensions</subject><ispartof>European journal of pharmaceutics and biopharmaceutics, 2008-08, Vol.69 (3), p.1104-1113</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-16d2ccdf357a2dfe2d66c72ffa850ec9bee212d34cbed6ef60d392ab7c22c4ff3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejpb.2008.01.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20593546$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18406586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Werling, Jane</creatorcontrib><creatorcontrib>Graham, Sabine</creatorcontrib><creatorcontrib>Owen, Heather</creatorcontrib><creatorcontrib>Nair, Lakshmy</creatorcontrib><creatorcontrib>Gonyon, Thomas</creatorcontrib><creatorcontrib>Carter, Phillip W.</creatorcontrib><title>Physicochemical stability of phospholipid-dispersed suspensions of crystalline itraconazole</title><title>European journal of pharmaceutics and biopharmaceutics</title><addtitle>Eur J Pharm Biopharm</addtitle><description>The physicochemical stability of an aqueous, phospholipid-based dispersion of itraconazole microcrystals was studied as a model water-insoluble drug suspension. The particle size, phospholipid concentrations, free fatty acid (FFA) content, pH, and zeta potential of two test suspensions were followed over 63 days at 5 and 40 °C storage conditions. Hydrolysis of a control suspension containing Lipoid E80 led to rapid FFA formation, pH drop, and subsequent particle aggregation. In the second suspension, sodium oleate used in conjunction with Lipoid E80 significantly enhanced the suspension physicochemical stability. Oleate anions effectively (1) increased the anionic charge of the phospholipid surface layer, (2) buffered the suspension near pH 7, and (3) reduced the specific production of oleic acid as a phosphatidylcholine (PC) degradant. The observed hydrolysis rate constants k obs ∼ 2 × 10 −7 (Lipoid only) and k obs ∼ 5 × 10 −8 (Lipoid and oleate) were consistent with the pH dependent behavior reported for saturated soybean PC solutions. Mechanistically, FFA formed initially in the control suspension partitioned to the aqueous phase with limited influence on the phospholipid microenvironment at the itraconazole particle surface. Phospholipid stabilization of water-insoluble drugs was demonstrated with clear benefits from fatty acid anions as co-additives to influence the surface microenvironment, reduce hydrolysis kinetics, and enhance suspension physicochemical stability.</description><subject>Antifungal Agents - administration &amp; dosage</subject><subject>Antifungal Agents - chemistry</subject><subject>Biological and medical sciences</subject><subject>Chemical Phenomena</subject><subject>Chemistry, Physical</subject><subject>Crystalline suspensions</subject><subject>Crystallization</subject><subject>Drug Stability</subject><subject>Electrochemistry</subject><subject>Excipients</subject><subject>Fatty Acids, Nonesterified - chemistry</subject><subject>General pharmacology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Itraconazole</subject><subject>Itraconazole - administration &amp; dosage</subject><subject>Itraconazole - chemistry</subject><subject>Lecithins - chemistry</subject><subject>Medical sciences</subject><subject>Oleate</subject><subject>Particle Size</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Phospholipid</subject><subject>Phospholipids - chemistry</subject><subject>Physicochemical stability</subject><subject>Suspensions</subject><issn>0939-6411</issn><issn>1873-3441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD2P1DAQhi0E4paDP0CB0kCX4I_ESSQadOJLOgkKqCgsZzzWeuWNgyd70vLrcbQr6ChGM8Xzvho9jL0UvBFc6LeHBg_L1EjOh4aLhiv-iO3E0Ktata14zHZ8VGOtWyFu2DOiA-e87bvhKbsRQ8t1N-gd-_ltf6YACfZ4DGBjRaudQgzruUq-WvaJysSwBFe7QAtmQlfRqVwzhTTTRkE-l1SMYcYqrNlCmu3vFPE5e-JtJHxx3bfsx8cP3-8-1_dfP325e39fQ9vxtRbaSQDnVddb6TxKpzX00ns7dBxhnBClkE61MKHT6DV3apR26kFKaL1Xt-zNpXfJ6dcJaTXHQIAx2hnTiYwe1aB6oQsoLyDkRJTRmyWHo81nI7jZlJqD2ZSaTanhwhSlJfTq2n6ajuj-Ra4OC_D6ClgqBn22MwT6y0nejaprN-7dhcPi4iFgNgQBZ0AXMsJqXAr_--MPGgiYlA</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Werling, Jane</creator><creator>Graham, Sabine</creator><creator>Owen, Heather</creator><creator>Nair, Lakshmy</creator><creator>Gonyon, Thomas</creator><creator>Carter, Phillip W.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080801</creationdate><title>Physicochemical stability of phospholipid-dispersed suspensions of crystalline itraconazole</title><author>Werling, Jane ; Graham, Sabine ; Owen, Heather ; Nair, Lakshmy ; Gonyon, Thomas ; Carter, Phillip W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-16d2ccdf357a2dfe2d66c72ffa850ec9bee212d34cbed6ef60d392ab7c22c4ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Antifungal Agents - administration &amp; dosage</topic><topic>Antifungal Agents - chemistry</topic><topic>Biological and medical sciences</topic><topic>Chemical Phenomena</topic><topic>Chemistry, Physical</topic><topic>Crystalline suspensions</topic><topic>Crystallization</topic><topic>Drug Stability</topic><topic>Electrochemistry</topic><topic>Excipients</topic><topic>Fatty Acids, Nonesterified - chemistry</topic><topic>General pharmacology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Itraconazole</topic><topic>Itraconazole - administration &amp; dosage</topic><topic>Itraconazole - chemistry</topic><topic>Lecithins - chemistry</topic><topic>Medical sciences</topic><topic>Oleate</topic><topic>Particle Size</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Phospholipid</topic><topic>Phospholipids - chemistry</topic><topic>Physicochemical stability</topic><topic>Suspensions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Werling, Jane</creatorcontrib><creatorcontrib>Graham, Sabine</creatorcontrib><creatorcontrib>Owen, Heather</creatorcontrib><creatorcontrib>Nair, Lakshmy</creatorcontrib><creatorcontrib>Gonyon, Thomas</creatorcontrib><creatorcontrib>Carter, Phillip W.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of pharmaceutics and biopharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Werling, Jane</au><au>Graham, Sabine</au><au>Owen, Heather</au><au>Nair, Lakshmy</au><au>Gonyon, Thomas</au><au>Carter, Phillip W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical stability of phospholipid-dispersed suspensions of crystalline itraconazole</atitle><jtitle>European journal of pharmaceutics and biopharmaceutics</jtitle><addtitle>Eur J Pharm Biopharm</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>69</volume><issue>3</issue><spage>1104</spage><epage>1113</epage><pages>1104-1113</pages><issn>0939-6411</issn><eissn>1873-3441</eissn><abstract>The physicochemical stability of an aqueous, phospholipid-based dispersion of itraconazole microcrystals was studied as a model water-insoluble drug suspension. The particle size, phospholipid concentrations, free fatty acid (FFA) content, pH, and zeta potential of two test suspensions were followed over 63 days at 5 and 40 °C storage conditions. Hydrolysis of a control suspension containing Lipoid E80 led to rapid FFA formation, pH drop, and subsequent particle aggregation. In the second suspension, sodium oleate used in conjunction with Lipoid E80 significantly enhanced the suspension physicochemical stability. Oleate anions effectively (1) increased the anionic charge of the phospholipid surface layer, (2) buffered the suspension near pH 7, and (3) reduced the specific production of oleic acid as a phosphatidylcholine (PC) degradant. The observed hydrolysis rate constants k obs ∼ 2 × 10 −7 (Lipoid only) and k obs ∼ 5 × 10 −8 (Lipoid and oleate) were consistent with the pH dependent behavior reported for saturated soybean PC solutions. Mechanistically, FFA formed initially in the control suspension partitioned to the aqueous phase with limited influence on the phospholipid microenvironment at the itraconazole particle surface. Phospholipid stabilization of water-insoluble drugs was demonstrated with clear benefits from fatty acid anions as co-additives to influence the surface microenvironment, reduce hydrolysis kinetics, and enhance suspension physicochemical stability.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>18406586</pmid><doi>10.1016/j.ejpb.2008.01.030</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0939-6411
ispartof European journal of pharmaceutics and biopharmaceutics, 2008-08, Vol.69 (3), p.1104-1113
issn 0939-6411
1873-3441
language eng
recordid cdi_proquest_miscellaneous_69383716
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Antifungal Agents - administration & dosage
Antifungal Agents - chemistry
Biological and medical sciences
Chemical Phenomena
Chemistry, Physical
Crystalline suspensions
Crystallization
Drug Stability
Electrochemistry
Excipients
Fatty Acids, Nonesterified - chemistry
General pharmacology
Hydrogen-Ion Concentration
Hydrolysis
Itraconazole
Itraconazole - administration & dosage
Itraconazole - chemistry
Lecithins - chemistry
Medical sciences
Oleate
Particle Size
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Phospholipid
Phospholipids - chemistry
Physicochemical stability
Suspensions
title Physicochemical stability of phospholipid-dispersed suspensions of crystalline itraconazole
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20stability%20of%20phospholipid-dispersed%20suspensions%20of%20crystalline%20itraconazole&rft.jtitle=European%20journal%20of%20pharmaceutics%20and%20biopharmaceutics&rft.au=Werling,%20Jane&rft.date=2008-08-01&rft.volume=69&rft.issue=3&rft.spage=1104&rft.epage=1113&rft.pages=1104-1113&rft.issn=0939-6411&rft.eissn=1873-3441&rft_id=info:doi/10.1016/j.ejpb.2008.01.030&rft_dat=%3Cproquest_cross%3E69383716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69383716&rft_id=info:pmid/18406586&rft_els_id=S0939641108000362&rfr_iscdi=true