Defective priming of the phagocyte oxidative burst in a child with recurrent intracellular infections
Human phagocytes (polymorphonuclear neutrophils and monocytes) play a critical role in host defense against invading microorganisms. Recent studies reported that circulating phagocytes undergo a final maturation process, in particular in terms of oxidative burst, during extravasation and migration t...
Gespeichert in:
Veröffentlicht in: | Microbes and infection 1999-07, Vol.1 (8), p.581-587 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 8 |
container_start_page | 581 |
container_title | Microbes and infection |
container_volume | 1 |
creator | Elbim, Carole Rajagopalan-Levasseur, Préma Chollet-Martin, Sylvie Gaillard, Jean-Louis Fay, Michèle Hakim, Jacques Fischer, Alain Casanova, Jean-Laurent Gougerot-Pocidalo, Marie-Anne |
description | Human phagocytes (polymorphonuclear neutrophils and monocytes) play a critical role in host defense against invading microorganisms. Recent studies reported that circulating phagocytes undergo a final maturation process, in particular in terms of oxidative burst, during extravasation and migration to local sites of inflammation. This process is known as priming. We report here on a nine-year-old boy with successive disseminated infections due to intracellular microorganisms (
Mycobacterium bovis, BCG, and
Salmonella typhimurium). No T- or B-cell quantitative or qualitative defects were found. Polymorphonuclear neutrophil (PMN) migration and NADPH oxidase in PMNs and monocytes stimulated with various agents at optimal concentrations were normal, ruling out a leukocyte adhesion deficiency syndrome, a Chediak Higashi syndrome, and a chronic granulomatous disease. Nevertheless, the patient's PMNs and monocytes showed defective priming capacity, as measured by H
2O
2 production after pretreatment with LPS (5 μg/mL for 30 min), TNFα (100 units/mL for 30 min), or IL-8 (50 ng/mL for 30 min) in response to bacterial N-formyl peptides (fMLP 10
-6 M for 5 min). In these conditions, H
2O
2 production of PMNs and monocytes from the patient did not exceed that of the samples treated with fMLP or LPS alone, while the controls strongly produced H
2O
2. Moreover, monocytes from the patient showed an impaired capacity to kill
S. typhimurium in vitro. Such an impairment could be related at least in part to the priming deficiency of phagocyte oxidative burst. This case suggests, for the first time, that in vivo priming processes are critical in host defence against intracellular pathogens. |
doi_str_mv | 10.1016/S1286-4579(99)80057-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69379936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1286457999800574</els_id><sourcerecordid>69379936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-5f4c5ccde1f8ba203a2e63ee9a219253b4b1178d240aa7fe94cc4877a11491c93</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhS0EoqXwCCAvEIJFwJM4cbxCqPxKlVgAEjtrMpn0GuUmxXYKfXuc3Ati14Vlj_zNzNE5QjwG9RIUNK--QNk2ha6NfW7ti1ap2hT6jjgF09jCgP5-N7__IifiQYw_lILaNPq-OAHVAJhKnwp-ywNT8tcsr4Lf--lSzoNMu1zu8HKmm8Ry_u173JBuCTFJP0mUtPNjL3_5tJOBaQmBp_UnBSQex2XEkKtt9DzFh-LegGPkR8f7THx7_-7r-cfi4vOHT-dvLgrSJaSiHjTVRD3D0HZYqgpLbipmiyXYsq463WXZbV9qhWgGtppIt8YggLZAtjoTzw5zr8L8c-GY3N7HVQ9OPC_RNbYy1lbNrWA2x-ajMlgfQApzjIEHt9qE4caBcmsQbgvCrS47a90WhNO578lxwdLtuf-v6-B8Bp4eAYyE4xBwIh__caVSWm37Xx8wzrZdew4ukueJuPfZ9uT62d-i5A8wcqZN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17391730</pqid></control><display><type>article</type><title>Defective priming of the phagocyte oxidative burst in a child with recurrent intracellular infections</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Elbim, Carole ; Rajagopalan-Levasseur, Préma ; Chollet-Martin, Sylvie ; Gaillard, Jean-Louis ; Fay, Michèle ; Hakim, Jacques ; Fischer, Alain ; Casanova, Jean-Laurent ; Gougerot-Pocidalo, Marie-Anne</creator><creatorcontrib>Elbim, Carole ; Rajagopalan-Levasseur, Préma ; Chollet-Martin, Sylvie ; Gaillard, Jean-Louis ; Fay, Michèle ; Hakim, Jacques ; Fischer, Alain ; Casanova, Jean-Laurent ; Gougerot-Pocidalo, Marie-Anne</creatorcontrib><description>Human phagocytes (polymorphonuclear neutrophils and monocytes) play a critical role in host defense against invading microorganisms. Recent studies reported that circulating phagocytes undergo a final maturation process, in particular in terms of oxidative burst, during extravasation and migration to local sites of inflammation. This process is known as priming. We report here on a nine-year-old boy with successive disseminated infections due to intracellular microorganisms (
Mycobacterium bovis, BCG, and
Salmonella typhimurium). No T- or B-cell quantitative or qualitative defects were found. Polymorphonuclear neutrophil (PMN) migration and NADPH oxidase in PMNs and monocytes stimulated with various agents at optimal concentrations were normal, ruling out a leukocyte adhesion deficiency syndrome, a Chediak Higashi syndrome, and a chronic granulomatous disease. Nevertheless, the patient's PMNs and monocytes showed defective priming capacity, as measured by H
2O
2 production after pretreatment with LPS (5 μg/mL for 30 min), TNFα (100 units/mL for 30 min), or IL-8 (50 ng/mL for 30 min) in response to bacterial N-formyl peptides (fMLP 10
-6 M for 5 min). In these conditions, H
2O
2 production of PMNs and monocytes from the patient did not exceed that of the samples treated with fMLP or LPS alone, while the controls strongly produced H
2O
2. Moreover, monocytes from the patient showed an impaired capacity to kill
S. typhimurium in vitro. Such an impairment could be related at least in part to the priming deficiency of phagocyte oxidative burst. This case suggests, for the first time, that in vivo priming processes are critical in host defence against intracellular pathogens.</description><identifier>ISSN: 1286-4579</identifier><identifier>EISSN: 1769-714X</identifier><identifier>DOI: 10.1016/S1286-4579(99)80057-4</identifier><identifier>PMID: 10611734</identifier><language>eng</language><publisher>Lausanne: Elsevier SAS</publisher><subject>Adult ; Analysis of the immune response. Humoral and cellular immunity ; Biological and medical sciences ; Cells, Cultured ; Chemotaxis, Leukocyte - drug effects ; Child ; Consanguinity ; Cytochrome c Group - metabolism ; Cytokines - pharmacology ; Female ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; Genes, Recessive ; Humans ; Hydrogen Peroxide - blood ; Hydrogen Peroxide - metabolism ; immune deficiency ; Immunobiology ; Lipopolysaccharides - pharmacology ; Male ; Monocytes - drug effects ; Monocytes - metabolism ; Monocytes - microbiology ; Monocytes - pathology ; Mycobacterium bovis ; Mycobacterium bovis - immunology ; Mycobacterium bovis - physiology ; N-Formylmethionine Leucyl-Phenylalanine - pharmacology ; NADPH Oxidases - metabolism ; Neutrophils - drug effects ; Neutrophils - metabolism ; Neutrophils - microbiology ; Neutrophils - pathology ; Organs and cells involved in the immune response ; oxidative burst ; Phagocyte Bactericidal Dysfunction - enzymology ; Phagocyte Bactericidal Dysfunction - immunology ; Phagocyte Bactericidal Dysfunction - metabolism ; Phagocyte Bactericidal Dysfunction - pathology ; phagocytes ; priming ; Recurrence ; Respiratory Burst - drug effects ; Salmonella Infections - enzymology ; Salmonella Infections - immunology ; Salmonella Infections - metabolism ; Salmonella Infections - pathology ; Salmonella typhimurium ; Salmonella typhimurium - immunology ; Salmonella typhimurium - physiology</subject><ispartof>Microbes and infection, 1999-07, Vol.1 (8), p.581-587</ispartof><rights>1999 Éditions scientifiques et médicales Elsevier SAS</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-5f4c5ccde1f8ba203a2e63ee9a219253b4b1178d240aa7fe94cc4877a11491c93</citedby><cites>FETCH-LOGICAL-c421t-5f4c5ccde1f8ba203a2e63ee9a219253b4b1178d240aa7fe94cc4877a11491c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1286457999800574$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2004030$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10611734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elbim, Carole</creatorcontrib><creatorcontrib>Rajagopalan-Levasseur, Préma</creatorcontrib><creatorcontrib>Chollet-Martin, Sylvie</creatorcontrib><creatorcontrib>Gaillard, Jean-Louis</creatorcontrib><creatorcontrib>Fay, Michèle</creatorcontrib><creatorcontrib>Hakim, Jacques</creatorcontrib><creatorcontrib>Fischer, Alain</creatorcontrib><creatorcontrib>Casanova, Jean-Laurent</creatorcontrib><creatorcontrib>Gougerot-Pocidalo, Marie-Anne</creatorcontrib><title>Defective priming of the phagocyte oxidative burst in a child with recurrent intracellular infections</title><title>Microbes and infection</title><addtitle>Microbes Infect</addtitle><description>Human phagocytes (polymorphonuclear neutrophils and monocytes) play a critical role in host defense against invading microorganisms. Recent studies reported that circulating phagocytes undergo a final maturation process, in particular in terms of oxidative burst, during extravasation and migration to local sites of inflammation. This process is known as priming. We report here on a nine-year-old boy with successive disseminated infections due to intracellular microorganisms (
Mycobacterium bovis, BCG, and
Salmonella typhimurium). No T- or B-cell quantitative or qualitative defects were found. Polymorphonuclear neutrophil (PMN) migration and NADPH oxidase in PMNs and monocytes stimulated with various agents at optimal concentrations were normal, ruling out a leukocyte adhesion deficiency syndrome, a Chediak Higashi syndrome, and a chronic granulomatous disease. Nevertheless, the patient's PMNs and monocytes showed defective priming capacity, as measured by H
2O
2 production after pretreatment with LPS (5 μg/mL for 30 min), TNFα (100 units/mL for 30 min), or IL-8 (50 ng/mL for 30 min) in response to bacterial N-formyl peptides (fMLP 10
-6 M for 5 min). In these conditions, H
2O
2 production of PMNs and monocytes from the patient did not exceed that of the samples treated with fMLP or LPS alone, while the controls strongly produced H
2O
2. Moreover, monocytes from the patient showed an impaired capacity to kill
S. typhimurium in vitro. Such an impairment could be related at least in part to the priming deficiency of phagocyte oxidative burst. This case suggests, for the first time, that in vivo priming processes are critical in host defence against intracellular pathogens.</description><subject>Adult</subject><subject>Analysis of the immune response. Humoral and cellular immunity</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Chemotaxis, Leukocyte - drug effects</subject><subject>Child</subject><subject>Consanguinity</subject><subject>Cytochrome c Group - metabolism</subject><subject>Cytokines - pharmacology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>Genes, Recessive</subject><subject>Humans</subject><subject>Hydrogen Peroxide - blood</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>immune deficiency</subject><subject>Immunobiology</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Male</subject><subject>Monocytes - drug effects</subject><subject>Monocytes - metabolism</subject><subject>Monocytes - microbiology</subject><subject>Monocytes - pathology</subject><subject>Mycobacterium bovis</subject><subject>Mycobacterium bovis - immunology</subject><subject>Mycobacterium bovis - physiology</subject><subject>N-Formylmethionine Leucyl-Phenylalanine - pharmacology</subject><subject>NADPH Oxidases - metabolism</subject><subject>Neutrophils - drug effects</subject><subject>Neutrophils - metabolism</subject><subject>Neutrophils - microbiology</subject><subject>Neutrophils - pathology</subject><subject>Organs and cells involved in the immune response</subject><subject>oxidative burst</subject><subject>Phagocyte Bactericidal Dysfunction - enzymology</subject><subject>Phagocyte Bactericidal Dysfunction - immunology</subject><subject>Phagocyte Bactericidal Dysfunction - metabolism</subject><subject>Phagocyte Bactericidal Dysfunction - pathology</subject><subject>phagocytes</subject><subject>priming</subject><subject>Recurrence</subject><subject>Respiratory Burst - drug effects</subject><subject>Salmonella Infections - enzymology</subject><subject>Salmonella Infections - immunology</subject><subject>Salmonella Infections - metabolism</subject><subject>Salmonella Infections - pathology</subject><subject>Salmonella typhimurium</subject><subject>Salmonella typhimurium - immunology</subject><subject>Salmonella typhimurium - physiology</subject><issn>1286-4579</issn><issn>1769-714X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1TAQhS0EoqXwCCAvEIJFwJM4cbxCqPxKlVgAEjtrMpn0GuUmxXYKfXuc3Ati14Vlj_zNzNE5QjwG9RIUNK--QNk2ha6NfW7ti1ap2hT6jjgF09jCgP5-N7__IifiQYw_lILaNPq-OAHVAJhKnwp-ywNT8tcsr4Lf--lSzoNMu1zu8HKmm8Ry_u173JBuCTFJP0mUtPNjL3_5tJOBaQmBp_UnBSQex2XEkKtt9DzFh-LegGPkR8f7THx7_-7r-cfi4vOHT-dvLgrSJaSiHjTVRD3D0HZYqgpLbipmiyXYsq463WXZbV9qhWgGtppIt8YggLZAtjoTzw5zr8L8c-GY3N7HVQ9OPC_RNbYy1lbNrWA2x-ajMlgfQApzjIEHt9qE4caBcmsQbgvCrS47a90WhNO578lxwdLtuf-v6-B8Bp4eAYyE4xBwIh__caVSWm37Xx8wzrZdew4ukueJuPfZ9uT62d-i5A8wcqZN</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Elbim, Carole</creator><creator>Rajagopalan-Levasseur, Préma</creator><creator>Chollet-Martin, Sylvie</creator><creator>Gaillard, Jean-Louis</creator><creator>Fay, Michèle</creator><creator>Hakim, Jacques</creator><creator>Fischer, Alain</creator><creator>Casanova, Jean-Laurent</creator><creator>Gougerot-Pocidalo, Marie-Anne</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>C1K</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>19990701</creationdate><title>Defective priming of the phagocyte oxidative burst in a child with recurrent intracellular infections</title><author>Elbim, Carole ; Rajagopalan-Levasseur, Préma ; Chollet-Martin, Sylvie ; Gaillard, Jean-Louis ; Fay, Michèle ; Hakim, Jacques ; Fischer, Alain ; Casanova, Jean-Laurent ; Gougerot-Pocidalo, Marie-Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-5f4c5ccde1f8ba203a2e63ee9a219253b4b1178d240aa7fe94cc4877a11491c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adult</topic><topic>Analysis of the immune response. Humoral and cellular immunity</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Chemotaxis, Leukocyte - drug effects</topic><topic>Child</topic><topic>Consanguinity</topic><topic>Cytochrome c Group - metabolism</topic><topic>Cytokines - pharmacology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>Genes, Recessive</topic><topic>Humans</topic><topic>Hydrogen Peroxide - blood</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>immune deficiency</topic><topic>Immunobiology</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Male</topic><topic>Monocytes - drug effects</topic><topic>Monocytes - metabolism</topic><topic>Monocytes - microbiology</topic><topic>Monocytes - pathology</topic><topic>Mycobacterium bovis</topic><topic>Mycobacterium bovis - immunology</topic><topic>Mycobacterium bovis - physiology</topic><topic>N-Formylmethionine Leucyl-Phenylalanine - pharmacology</topic><topic>NADPH Oxidases - metabolism</topic><topic>Neutrophils - drug effects</topic><topic>Neutrophils - metabolism</topic><topic>Neutrophils - microbiology</topic><topic>Neutrophils - pathology</topic><topic>Organs and cells involved in the immune response</topic><topic>oxidative burst</topic><topic>Phagocyte Bactericidal Dysfunction - enzymology</topic><topic>Phagocyte Bactericidal Dysfunction - immunology</topic><topic>Phagocyte Bactericidal Dysfunction - metabolism</topic><topic>Phagocyte Bactericidal Dysfunction - pathology</topic><topic>phagocytes</topic><topic>priming</topic><topic>Recurrence</topic><topic>Respiratory Burst - drug effects</topic><topic>Salmonella Infections - enzymology</topic><topic>Salmonella Infections - immunology</topic><topic>Salmonella Infections - metabolism</topic><topic>Salmonella Infections - pathology</topic><topic>Salmonella typhimurium</topic><topic>Salmonella typhimurium - immunology</topic><topic>Salmonella typhimurium - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elbim, Carole</creatorcontrib><creatorcontrib>Rajagopalan-Levasseur, Préma</creatorcontrib><creatorcontrib>Chollet-Martin, Sylvie</creatorcontrib><creatorcontrib>Gaillard, Jean-Louis</creatorcontrib><creatorcontrib>Fay, Michèle</creatorcontrib><creatorcontrib>Hakim, Jacques</creatorcontrib><creatorcontrib>Fischer, Alain</creatorcontrib><creatorcontrib>Casanova, Jean-Laurent</creatorcontrib><creatorcontrib>Gougerot-Pocidalo, Marie-Anne</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microbes and infection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elbim, Carole</au><au>Rajagopalan-Levasseur, Préma</au><au>Chollet-Martin, Sylvie</au><au>Gaillard, Jean-Louis</au><au>Fay, Michèle</au><au>Hakim, Jacques</au><au>Fischer, Alain</au><au>Casanova, Jean-Laurent</au><au>Gougerot-Pocidalo, Marie-Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defective priming of the phagocyte oxidative burst in a child with recurrent intracellular infections</atitle><jtitle>Microbes and infection</jtitle><addtitle>Microbes Infect</addtitle><date>1999-07-01</date><risdate>1999</risdate><volume>1</volume><issue>8</issue><spage>581</spage><epage>587</epage><pages>581-587</pages><issn>1286-4579</issn><eissn>1769-714X</eissn><abstract>Human phagocytes (polymorphonuclear neutrophils and monocytes) play a critical role in host defense against invading microorganisms. Recent studies reported that circulating phagocytes undergo a final maturation process, in particular in terms of oxidative burst, during extravasation and migration to local sites of inflammation. This process is known as priming. We report here on a nine-year-old boy with successive disseminated infections due to intracellular microorganisms (
Mycobacterium bovis, BCG, and
Salmonella typhimurium). No T- or B-cell quantitative or qualitative defects were found. Polymorphonuclear neutrophil (PMN) migration and NADPH oxidase in PMNs and monocytes stimulated with various agents at optimal concentrations were normal, ruling out a leukocyte adhesion deficiency syndrome, a Chediak Higashi syndrome, and a chronic granulomatous disease. Nevertheless, the patient's PMNs and monocytes showed defective priming capacity, as measured by H
2O
2 production after pretreatment with LPS (5 μg/mL for 30 min), TNFα (100 units/mL for 30 min), or IL-8 (50 ng/mL for 30 min) in response to bacterial N-formyl peptides (fMLP 10
-6 M for 5 min). In these conditions, H
2O
2 production of PMNs and monocytes from the patient did not exceed that of the samples treated with fMLP or LPS alone, while the controls strongly produced H
2O
2. Moreover, monocytes from the patient showed an impaired capacity to kill
S. typhimurium in vitro. Such an impairment could be related at least in part to the priming deficiency of phagocyte oxidative burst. This case suggests, for the first time, that in vivo priming processes are critical in host defence against intracellular pathogens.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>Paris</cop><pub>Elsevier SAS</pub><pmid>10611734</pmid><doi>10.1016/S1286-4579(99)80057-4</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1286-4579 |
ispartof | Microbes and infection, 1999-07, Vol.1 (8), p.581-587 |
issn | 1286-4579 1769-714X |
language | eng |
recordid | cdi_proquest_miscellaneous_69379936 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adult Analysis of the immune response. Humoral and cellular immunity Biological and medical sciences Cells, Cultured Chemotaxis, Leukocyte - drug effects Child Consanguinity Cytochrome c Group - metabolism Cytokines - pharmacology Female Fundamental and applied biological sciences. Psychology Fundamental immunology Genes, Recessive Humans Hydrogen Peroxide - blood Hydrogen Peroxide - metabolism immune deficiency Immunobiology Lipopolysaccharides - pharmacology Male Monocytes - drug effects Monocytes - metabolism Monocytes - microbiology Monocytes - pathology Mycobacterium bovis Mycobacterium bovis - immunology Mycobacterium bovis - physiology N-Formylmethionine Leucyl-Phenylalanine - pharmacology NADPH Oxidases - metabolism Neutrophils - drug effects Neutrophils - metabolism Neutrophils - microbiology Neutrophils - pathology Organs and cells involved in the immune response oxidative burst Phagocyte Bactericidal Dysfunction - enzymology Phagocyte Bactericidal Dysfunction - immunology Phagocyte Bactericidal Dysfunction - metabolism Phagocyte Bactericidal Dysfunction - pathology phagocytes priming Recurrence Respiratory Burst - drug effects Salmonella Infections - enzymology Salmonella Infections - immunology Salmonella Infections - metabolism Salmonella Infections - pathology Salmonella typhimurium Salmonella typhimurium - immunology Salmonella typhimurium - physiology |
title | Defective priming of the phagocyte oxidative burst in a child with recurrent intracellular infections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defective%20priming%20of%20the%20phagocyte%20oxidative%20burst%20in%20a%20child%20with%20recurrent%20intracellular%20infections&rft.jtitle=Microbes%20and%20infection&rft.au=Elbim,%20Carole&rft.date=1999-07-01&rft.volume=1&rft.issue=8&rft.spage=581&rft.epage=587&rft.pages=581-587&rft.issn=1286-4579&rft.eissn=1769-714X&rft_id=info:doi/10.1016/S1286-4579(99)80057-4&rft_dat=%3Cproquest_cross%3E69379936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17391730&rft_id=info:pmid/10611734&rft_els_id=S1286457999800574&rfr_iscdi=true |