Arsenic Speciation in Rice and Soil Containing Related Compounds of Chemical Warfare Agents

Diphenylarsinic acid, phenylarsonic acid, methylphenylarsinic acid (MPAA), dimethylphenylarsine oxide (DMPAO), and methyldiphenylarsine oxide (MDPAO) in soil and rice were extracted, separated by reversed-phase chromatography, and quantified by ICPMS with a membrane desolvating system. For the extra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2008-08, Vol.80 (15), p.5768-5775
Hauptverfasser: Baba, Koji, Arao, Tomohito, Maejima, Yuji, Watanabe, Eiki, Eun, Heesoo, Ishizaka, Masumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5775
container_issue 15
container_start_page 5768
container_title Analytical chemistry (Washington)
container_volume 80
creator Baba, Koji
Arao, Tomohito
Maejima, Yuji
Watanabe, Eiki
Eun, Heesoo
Ishizaka, Masumi
description Diphenylarsinic acid, phenylarsonic acid, methylphenylarsinic acid (MPAA), dimethylphenylarsine oxide (DMPAO), and methyldiphenylarsine oxide (MDPAO) in soil and rice were extracted, separated by reversed-phase chromatography, and quantified by ICPMS with a membrane desolvating system. For the extraction of arsenicals from rice grain and straw, 68% HNO3 provided better extraction efficiency than water, 50% methanol, or 2.0 mol L−1 trifluoroacetic acid. For the extraction from soil, 68% HNO3 provided better extraction efficiency than H2O, 1 mol L−1 H3PO4, or 1 mol L−1 NaOH. The contaminated soil contained all five aromatic arsenicals along with inorganic arsenicals as main species (5.86 ± 0.19 μg of As kg−1: 60.8 ± 2.0% of total extracted As). After pot experiments, rice straw contained mainly DMPAO (7.71 ± 0.48 μg of As kg−1: 60.5 ± 3.7%), MDPAO (0.91 ± 0.07 μg of As kg−1: 7.2 ± 0.5%), and inorganic As (2.85 ± 0.20 μg of As kg−1: 22.3 ± 1.6%). On the other hand, rice grain contained mainly MPAA (1.17 ± 0.04 μg of As kg−1: 86.7 ± 2.7%). The root uptake of each species from the soil and transport from straw to grains were significantly related to the calculated log K ow values.
doi_str_mv 10.1021/ac8002984
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69372960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20919060</sourcerecordid><originalsourceid>FETCH-LOGICAL-a546t-3dcf7d9c59841ddb5481534b3c19d7d5f956d6d65c876fdc26646c2b014a56853</originalsourceid><addsrcrecordid>eNqF0V1rFDEUBuAgil2rF_4BCUIFL0bPyUySyeWy-IX1g27Fghchm2Rq6kyyJjOg_96pu2xFLyQXgeThkDcvIQ8RniEwfG5sC8BU29wiC-QMKtG27DZZAEBdMQlwRO6VcgWACCjukiNsuRRC4oJ8WebiY7B0vfU2mDGkSEOkZ8F6aqKj6xR6ukpxNCGGeEnPfG9G7-ajYZum6ApNHV199UOwpqefTe5M9nR56eNY7pM7nemLf7Dfj8mnly_OV6-r0w-v3qyWp5XhjRir2tlOOmX5HACd2_CmRV43m9qictLxTnHh5sVtK0XnLBOiEZZtABvDRcvrY_JkN3eb0_fJl1EPoVjf9yb6NBUtVC2ZEvBfyEChgt_w8V_wKk05ziE0Q9kqVqtmRk93yOZUSvad3uYwmPxTI-jrXvShl9k-2g-cNoN3N3JfxAxO9sCU-Se7bKIN5eAYcMEQrrNWOxfK6H8c7k3-poWsJdfnH9f6gr_Hi7fsnf5jrrHlJsS_D_wF1EOtKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217892394</pqid></control><display><type>article</type><title>Arsenic Speciation in Rice and Soil Containing Related Compounds of Chemical Warfare Agents</title><source>ACS Publications</source><creator>Baba, Koji ; Arao, Tomohito ; Maejima, Yuji ; Watanabe, Eiki ; Eun, Heesoo ; Ishizaka, Masumi</creator><creatorcontrib>Baba, Koji ; Arao, Tomohito ; Maejima, Yuji ; Watanabe, Eiki ; Eun, Heesoo ; Ishizaka, Masumi</creatorcontrib><description>Diphenylarsinic acid, phenylarsonic acid, methylphenylarsinic acid (MPAA), dimethylphenylarsine oxide (DMPAO), and methyldiphenylarsine oxide (MDPAO) in soil and rice were extracted, separated by reversed-phase chromatography, and quantified by ICPMS with a membrane desolvating system. For the extraction of arsenicals from rice grain and straw, 68% HNO3 provided better extraction efficiency than water, 50% methanol, or 2.0 mol L−1 trifluoroacetic acid. For the extraction from soil, 68% HNO3 provided better extraction efficiency than H2O, 1 mol L−1 H3PO4, or 1 mol L−1 NaOH. The contaminated soil contained all five aromatic arsenicals along with inorganic arsenicals as main species (5.86 ± 0.19 μg of As kg−1: 60.8 ± 2.0% of total extracted As). After pot experiments, rice straw contained mainly DMPAO (7.71 ± 0.48 μg of As kg−1: 60.5 ± 3.7%), MDPAO (0.91 ± 0.07 μg of As kg−1: 7.2 ± 0.5%), and inorganic As (2.85 ± 0.20 μg of As kg−1: 22.3 ± 1.6%). On the other hand, rice grain contained mainly MPAA (1.17 ± 0.04 μg of As kg−1: 86.7 ± 2.7%). The root uptake of each species from the soil and transport from straw to grains were significantly related to the calculated log K ow values.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac8002984</identifier><identifier>PMID: 18576671</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acids ; Analysis methods ; Analytical chemistry ; Applied sciences ; Arsenic ; Chemical compounds ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Oryza sativa ; Other chromatographic methods ; Pollution ; Rice ; Soil and sediments pollution ; Soil contamination ; Soils ; Spectrometric and optical methods</subject><ispartof>Analytical chemistry (Washington), 2008-08, Vol.80 (15), p.5768-5775</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a546t-3dcf7d9c59841ddb5481534b3c19d7d5f956d6d65c876fdc26646c2b014a56853</citedby><cites>FETCH-LOGICAL-a546t-3dcf7d9c59841ddb5481534b3c19d7d5f956d6d65c876fdc26646c2b014a56853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac8002984$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac8002984$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20562105$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18576671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baba, Koji</creatorcontrib><creatorcontrib>Arao, Tomohito</creatorcontrib><creatorcontrib>Maejima, Yuji</creatorcontrib><creatorcontrib>Watanabe, Eiki</creatorcontrib><creatorcontrib>Eun, Heesoo</creatorcontrib><creatorcontrib>Ishizaka, Masumi</creatorcontrib><title>Arsenic Speciation in Rice and Soil Containing Related Compounds of Chemical Warfare Agents</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Diphenylarsinic acid, phenylarsonic acid, methylphenylarsinic acid (MPAA), dimethylphenylarsine oxide (DMPAO), and methyldiphenylarsine oxide (MDPAO) in soil and rice were extracted, separated by reversed-phase chromatography, and quantified by ICPMS with a membrane desolvating system. For the extraction of arsenicals from rice grain and straw, 68% HNO3 provided better extraction efficiency than water, 50% methanol, or 2.0 mol L−1 trifluoroacetic acid. For the extraction from soil, 68% HNO3 provided better extraction efficiency than H2O, 1 mol L−1 H3PO4, or 1 mol L−1 NaOH. The contaminated soil contained all five aromatic arsenicals along with inorganic arsenicals as main species (5.86 ± 0.19 μg of As kg−1: 60.8 ± 2.0% of total extracted As). After pot experiments, rice straw contained mainly DMPAO (7.71 ± 0.48 μg of As kg−1: 60.5 ± 3.7%), MDPAO (0.91 ± 0.07 μg of As kg−1: 7.2 ± 0.5%), and inorganic As (2.85 ± 0.20 μg of As kg−1: 22.3 ± 1.6%). On the other hand, rice grain contained mainly MPAA (1.17 ± 0.04 μg of As kg−1: 86.7 ± 2.7%). The root uptake of each species from the soil and transport from straw to grains were significantly related to the calculated log K ow values.</description><subject>Acids</subject><subject>Analysis methods</subject><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Arsenic</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Oryza sativa</subject><subject>Other chromatographic methods</subject><subject>Pollution</subject><subject>Rice</subject><subject>Soil and sediments pollution</subject><subject>Soil contamination</subject><subject>Soils</subject><subject>Spectrometric and optical methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0V1rFDEUBuAgil2rF_4BCUIFL0bPyUySyeWy-IX1g27Fghchm2Rq6kyyJjOg_96pu2xFLyQXgeThkDcvIQ8RniEwfG5sC8BU29wiC-QMKtG27DZZAEBdMQlwRO6VcgWACCjukiNsuRRC4oJ8WebiY7B0vfU2mDGkSEOkZ8F6aqKj6xR6ukpxNCGGeEnPfG9G7-ajYZum6ApNHV199UOwpqefTe5M9nR56eNY7pM7nemLf7Dfj8mnly_OV6-r0w-v3qyWp5XhjRir2tlOOmX5HACd2_CmRV43m9qictLxTnHh5sVtK0XnLBOiEZZtABvDRcvrY_JkN3eb0_fJl1EPoVjf9yb6NBUtVC2ZEvBfyEChgt_w8V_wKk05ziE0Q9kqVqtmRk93yOZUSvad3uYwmPxTI-jrXvShl9k-2g-cNoN3N3JfxAxO9sCU-Se7bKIN5eAYcMEQrrNWOxfK6H8c7k3-poWsJdfnH9f6gr_Hi7fsnf5jrrHlJsS_D_wF1EOtKA</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Baba, Koji</creator><creator>Arao, Tomohito</creator><creator>Maejima, Yuji</creator><creator>Watanabe, Eiki</creator><creator>Eun, Heesoo</creator><creator>Ishizaka, Masumi</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080801</creationdate><title>Arsenic Speciation in Rice and Soil Containing Related Compounds of Chemical Warfare Agents</title><author>Baba, Koji ; Arao, Tomohito ; Maejima, Yuji ; Watanabe, Eiki ; Eun, Heesoo ; Ishizaka, Masumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a546t-3dcf7d9c59841ddb5481534b3c19d7d5f956d6d65c876fdc26646c2b014a56853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acids</topic><topic>Analysis methods</topic><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Arsenic</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Oryza sativa</topic><topic>Other chromatographic methods</topic><topic>Pollution</topic><topic>Rice</topic><topic>Soil and sediments pollution</topic><topic>Soil contamination</topic><topic>Soils</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baba, Koji</creatorcontrib><creatorcontrib>Arao, Tomohito</creatorcontrib><creatorcontrib>Maejima, Yuji</creatorcontrib><creatorcontrib>Watanabe, Eiki</creatorcontrib><creatorcontrib>Eun, Heesoo</creatorcontrib><creatorcontrib>Ishizaka, Masumi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baba, Koji</au><au>Arao, Tomohito</au><au>Maejima, Yuji</au><au>Watanabe, Eiki</au><au>Eun, Heesoo</au><au>Ishizaka, Masumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arsenic Speciation in Rice and Soil Containing Related Compounds of Chemical Warfare Agents</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>80</volume><issue>15</issue><spage>5768</spage><epage>5775</epage><pages>5768-5775</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Diphenylarsinic acid, phenylarsonic acid, methylphenylarsinic acid (MPAA), dimethylphenylarsine oxide (DMPAO), and methyldiphenylarsine oxide (MDPAO) in soil and rice were extracted, separated by reversed-phase chromatography, and quantified by ICPMS with a membrane desolvating system. For the extraction of arsenicals from rice grain and straw, 68% HNO3 provided better extraction efficiency than water, 50% methanol, or 2.0 mol L−1 trifluoroacetic acid. For the extraction from soil, 68% HNO3 provided better extraction efficiency than H2O, 1 mol L−1 H3PO4, or 1 mol L−1 NaOH. The contaminated soil contained all five aromatic arsenicals along with inorganic arsenicals as main species (5.86 ± 0.19 μg of As kg−1: 60.8 ± 2.0% of total extracted As). After pot experiments, rice straw contained mainly DMPAO (7.71 ± 0.48 μg of As kg−1: 60.5 ± 3.7%), MDPAO (0.91 ± 0.07 μg of As kg−1: 7.2 ± 0.5%), and inorganic As (2.85 ± 0.20 μg of As kg−1: 22.3 ± 1.6%). On the other hand, rice grain contained mainly MPAA (1.17 ± 0.04 μg of As kg−1: 86.7 ± 2.7%). The root uptake of each species from the soil and transport from straw to grains were significantly related to the calculated log K ow values.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18576671</pmid><doi>10.1021/ac8002984</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2008-08, Vol.80 (15), p.5768-5775
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_69372960
source ACS Publications
subjects Acids
Analysis methods
Analytical chemistry
Applied sciences
Arsenic
Chemical compounds
Chemistry
Chromatographic methods and physical methods associated with chromatography
Exact sciences and technology
Oryza sativa
Other chromatographic methods
Pollution
Rice
Soil and sediments pollution
Soil contamination
Soils
Spectrometric and optical methods
title Arsenic Speciation in Rice and Soil Containing Related Compounds of Chemical Warfare Agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arsenic%20Speciation%20in%20Rice%20and%20Soil%20Containing%20Related%20Compounds%20of%20Chemical%20Warfare%20Agents&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Baba,%20Koji&rft.date=2008-08-01&rft.volume=80&rft.issue=15&rft.spage=5768&rft.epage=5775&rft.pages=5768-5775&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac8002984&rft_dat=%3Cproquest_cross%3E20919060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217892394&rft_id=info:pmid/18576671&rfr_iscdi=true