Determining NMR flow propagator moments in porous rocks without the influence of relaxation
Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times, T 1 and T 2. These spin relaxation mechanisms normally result in a loss of signal that va...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance (1997) 2008-08, Vol.193 (2), p.218-225 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | 2 |
container_start_page | 218 |
container_title | Journal of magnetic resonance (1997) |
container_volume | 193 |
creator | Mitchell, J. Graf von der Schulenburg, D.A. Holland, D.J. Fordham, E.J. Johns, M.L. Gladden, L.F. |
description | Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times,
T
1 and
T
2. These spin relaxation mechanisms normally result in a loss of signal that varies depending on the displacement
ζ of the flowing spins, thereby preventing the acquisition of quantitative propagator data. The full relaxation behaviour of the system under flow needs to be characterised to enable the implementation of a true quantitative measurement. Two-dimensional NMR correlations of
ζ
−
T
2 and
T
1
−
T
2 are used in combination to provide the flow propagators without relaxation weighting.
T
1
−
ζ correlations cannot be used due to the loss of
T
1 information during the displacement observation time
Δ. Here the moments of the propagators are extracted by statistical analysis of the full propagator shape. The measured displacements (first moments) are seen to correlate with the expected mean displacements for long observation times
Δ. The higher order moments of the propagators determined by this method indicate those obtained previously using a correction were overestimated. |
doi_str_mv | 10.1016/j.jmr.2008.05.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69353761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780708001390</els_id><sourcerecordid>69353761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-37baa3936a0977be7b526595d118c9f7c0775c530b57254bd566971f69786a753</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq0KVD7aH9BL5RO3pOMNYyfihPgolfiQqvbUg-U4E_CSxIvtAP339XZX4sbFY2meeTXzMPZFQClAyG_LcjmGcgFQl4AlgPjA9gU0soAa5c7_PxSqBrXHDmJcZkCggo9sT9QojhHlPvtzTonC6CY33fPbm5-8H_wLXwW_Mvcm-cBHP9KUIncTX_ng58iDt4-Rv7j04OfE0wPlXj_MNFnivueBBvNqkvPTJ7bbmyHS5209ZL8vL36dXRXXd99_nJ1eF7ZCkYpKtcZUTSUNNEq1pFpcSGywE6K2Ta8sKIUWK2hRLfC47VDKRok-P7U0CqtDdrTJzWs_zRSTHl20NAxmorywlk2FlZIig2ID2uBjDNTrVXCjCX-1AL02qpc6G9VroxpQZ2F55us2fG5H6t4mtgozcLIBKJ_47CjoaN1aRucC2aQ7796J_wdB_oaW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69353761</pqid></control><display><type>article</type><title>Determining NMR flow propagator moments in porous rocks without the influence of relaxation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mitchell, J. ; Graf von der Schulenburg, D.A. ; Holland, D.J. ; Fordham, E.J. ; Johns, M.L. ; Gladden, L.F.</creator><creatorcontrib>Mitchell, J. ; Graf von der Schulenburg, D.A. ; Holland, D.J. ; Fordham, E.J. ; Johns, M.L. ; Gladden, L.F.</creatorcontrib><description>Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times,
T
1 and
T
2. These spin relaxation mechanisms normally result in a loss of signal that varies depending on the displacement
ζ of the flowing spins, thereby preventing the acquisition of quantitative propagator data. The full relaxation behaviour of the system under flow needs to be characterised to enable the implementation of a true quantitative measurement. Two-dimensional NMR correlations of
ζ
−
T
2 and
T
1
−
T
2 are used in combination to provide the flow propagators without relaxation weighting.
T
1
−
ζ correlations cannot be used due to the loss of
T
1 information during the displacement observation time
Δ. Here the moments of the propagators are extracted by statistical analysis of the full propagator shape. The measured displacements (first moments) are seen to correlate with the expected mean displacements for long observation times
Δ. The higher order moments of the propagators determined by this method indicate those obtained previously using a correction were overestimated.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2008.05.001</identifier><identifier>PMID: 18514556</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Diffusion ; Displacement-T2 correlation ; Flow ; Geologic Sediments - analysis ; Geologic Sediments - chemistry ; Laplace–Fourier transform ; Magnetic Resonance Spectroscopy - methods ; Permeable rocks ; Propagators ; Relaxation ; Rheology - methods ; Salts - analysis ; Salts - chemistry ; T1-displacement correlation</subject><ispartof>Journal of magnetic resonance (1997), 2008-08, Vol.193 (2), p.218-225</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-37baa3936a0977be7b526595d118c9f7c0775c530b57254bd566971f69786a753</citedby><cites>FETCH-LOGICAL-c351t-37baa3936a0977be7b526595d118c9f7c0775c530b57254bd566971f69786a753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmr.2008.05.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18514556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitchell, J.</creatorcontrib><creatorcontrib>Graf von der Schulenburg, D.A.</creatorcontrib><creatorcontrib>Holland, D.J.</creatorcontrib><creatorcontrib>Fordham, E.J.</creatorcontrib><creatorcontrib>Johns, M.L.</creatorcontrib><creatorcontrib>Gladden, L.F.</creatorcontrib><title>Determining NMR flow propagator moments in porous rocks without the influence of relaxation</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times,
T
1 and
T
2. These spin relaxation mechanisms normally result in a loss of signal that varies depending on the displacement
ζ of the flowing spins, thereby preventing the acquisition of quantitative propagator data. The full relaxation behaviour of the system under flow needs to be characterised to enable the implementation of a true quantitative measurement. Two-dimensional NMR correlations of
ζ
−
T
2 and
T
1
−
T
2 are used in combination to provide the flow propagators without relaxation weighting.
T
1
−
ζ correlations cannot be used due to the loss of
T
1 information during the displacement observation time
Δ. Here the moments of the propagators are extracted by statistical analysis of the full propagator shape. The measured displacements (first moments) are seen to correlate with the expected mean displacements for long observation times
Δ. The higher order moments of the propagators determined by this method indicate those obtained previously using a correction were overestimated.</description><subject>Algorithms</subject><subject>Diffusion</subject><subject>Displacement-T2 correlation</subject><subject>Flow</subject><subject>Geologic Sediments - analysis</subject><subject>Geologic Sediments - chemistry</subject><subject>Laplace–Fourier transform</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Permeable rocks</subject><subject>Propagators</subject><subject>Relaxation</subject><subject>Rheology - methods</subject><subject>Salts - analysis</subject><subject>Salts - chemistry</subject><subject>T1-displacement correlation</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhq0KVD7aH9BL5RO3pOMNYyfihPgolfiQqvbUg-U4E_CSxIvtAP339XZX4sbFY2meeTXzMPZFQClAyG_LcjmGcgFQl4AlgPjA9gU0soAa5c7_PxSqBrXHDmJcZkCggo9sT9QojhHlPvtzTonC6CY33fPbm5-8H_wLXwW_Mvcm-cBHP9KUIncTX_ng58iDt4-Rv7j04OfE0wPlXj_MNFnivueBBvNqkvPTJ7bbmyHS5209ZL8vL36dXRXXd99_nJ1eF7ZCkYpKtcZUTSUNNEq1pFpcSGywE6K2Ta8sKIUWK2hRLfC47VDKRok-P7U0CqtDdrTJzWs_zRSTHl20NAxmorywlk2FlZIig2ID2uBjDNTrVXCjCX-1AL02qpc6G9VroxpQZ2F55us2fG5H6t4mtgozcLIBKJ_47CjoaN1aRucC2aQ7796J_wdB_oaW</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Mitchell, J.</creator><creator>Graf von der Schulenburg, D.A.</creator><creator>Holland, D.J.</creator><creator>Fordham, E.J.</creator><creator>Johns, M.L.</creator><creator>Gladden, L.F.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080801</creationdate><title>Determining NMR flow propagator moments in porous rocks without the influence of relaxation</title><author>Mitchell, J. ; Graf von der Schulenburg, D.A. ; Holland, D.J. ; Fordham, E.J. ; Johns, M.L. ; Gladden, L.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-37baa3936a0977be7b526595d118c9f7c0775c530b57254bd566971f69786a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Diffusion</topic><topic>Displacement-T2 correlation</topic><topic>Flow</topic><topic>Geologic Sediments - analysis</topic><topic>Geologic Sediments - chemistry</topic><topic>Laplace–Fourier transform</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Permeable rocks</topic><topic>Propagators</topic><topic>Relaxation</topic><topic>Rheology - methods</topic><topic>Salts - analysis</topic><topic>Salts - chemistry</topic><topic>T1-displacement correlation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchell, J.</creatorcontrib><creatorcontrib>Graf von der Schulenburg, D.A.</creatorcontrib><creatorcontrib>Holland, D.J.</creatorcontrib><creatorcontrib>Fordham, E.J.</creatorcontrib><creatorcontrib>Johns, M.L.</creatorcontrib><creatorcontrib>Gladden, L.F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchell, J.</au><au>Graf von der Schulenburg, D.A.</au><au>Holland, D.J.</au><au>Fordham, E.J.</au><au>Johns, M.L.</au><au>Gladden, L.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining NMR flow propagator moments in porous rocks without the influence of relaxation</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>193</volume><issue>2</issue><spage>218</spage><epage>225</epage><pages>218-225</pages><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times,
T
1 and
T
2. These spin relaxation mechanisms normally result in a loss of signal that varies depending on the displacement
ζ of the flowing spins, thereby preventing the acquisition of quantitative propagator data. The full relaxation behaviour of the system under flow needs to be characterised to enable the implementation of a true quantitative measurement. Two-dimensional NMR correlations of
ζ
−
T
2 and
T
1
−
T
2 are used in combination to provide the flow propagators without relaxation weighting.
T
1
−
ζ correlations cannot be used due to the loss of
T
1 information during the displacement observation time
Δ. Here the moments of the propagators are extracted by statistical analysis of the full propagator shape. The measured displacements (first moments) are seen to correlate with the expected mean displacements for long observation times
Δ. The higher order moments of the propagators determined by this method indicate those obtained previously using a correction were overestimated.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18514556</pmid><doi>10.1016/j.jmr.2008.05.001</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1090-7807 |
ispartof | Journal of magnetic resonance (1997), 2008-08, Vol.193 (2), p.218-225 |
issn | 1090-7807 1096-0856 |
language | eng |
recordid | cdi_proquest_miscellaneous_69353761 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Algorithms Diffusion Displacement-T2 correlation Flow Geologic Sediments - analysis Geologic Sediments - chemistry Laplace–Fourier transform Magnetic Resonance Spectroscopy - methods Permeable rocks Propagators Relaxation Rheology - methods Salts - analysis Salts - chemistry T1-displacement correlation |
title | Determining NMR flow propagator moments in porous rocks without the influence of relaxation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20NMR%20flow%20propagator%20moments%20in%20porous%20rocks%20without%20the%20influence%20of%20relaxation&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Mitchell,%20J.&rft.date=2008-08-01&rft.volume=193&rft.issue=2&rft.spage=218&rft.epage=225&rft.pages=218-225&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2008.05.001&rft_dat=%3Cproquest_cross%3E69353761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69353761&rft_id=info:pmid/18514556&rft_els_id=S1090780708001390&rfr_iscdi=true |