Determining NMR flow propagator moments in porous rocks without the influence of relaxation

Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times, T 1 and T 2. These spin relaxation mechanisms normally result in a loss of signal that va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 2008-08, Vol.193 (2), p.218-225
Hauptverfasser: Mitchell, J., Graf von der Schulenburg, D.A., Holland, D.J., Fordham, E.J., Johns, M.L., Gladden, L.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 2
container_start_page 218
container_title Journal of magnetic resonance (1997)
container_volume 193
creator Mitchell, J.
Graf von der Schulenburg, D.A.
Holland, D.J.
Fordham, E.J.
Johns, M.L.
Gladden, L.F.
description Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times, T 1 and T 2. These spin relaxation mechanisms normally result in a loss of signal that varies depending on the displacement ζ of the flowing spins, thereby preventing the acquisition of quantitative propagator data. The full relaxation behaviour of the system under flow needs to be characterised to enable the implementation of a true quantitative measurement. Two-dimensional NMR correlations of ζ − T 2 and T 1 − T 2 are used in combination to provide the flow propagators without relaxation weighting. T 1 − ζ correlations cannot be used due to the loss of T 1 information during the displacement observation time Δ. Here the moments of the propagators are extracted by statistical analysis of the full propagator shape. The measured displacements (first moments) are seen to correlate with the expected mean displacements for long observation times Δ. The higher order moments of the propagators determined by this method indicate those obtained previously using a correction were overestimated.
doi_str_mv 10.1016/j.jmr.2008.05.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69353761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780708001390</els_id><sourcerecordid>69353761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-37baa3936a0977be7b526595d118c9f7c0775c530b57254bd566971f69786a753</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq0KVD7aH9BL5RO3pOMNYyfihPgolfiQqvbUg-U4E_CSxIvtAP339XZX4sbFY2meeTXzMPZFQClAyG_LcjmGcgFQl4AlgPjA9gU0soAa5c7_PxSqBrXHDmJcZkCggo9sT9QojhHlPvtzTonC6CY33fPbm5-8H_wLXwW_Mvcm-cBHP9KUIncTX_ng58iDt4-Rv7j04OfE0wPlXj_MNFnivueBBvNqkvPTJ7bbmyHS5209ZL8vL36dXRXXd99_nJ1eF7ZCkYpKtcZUTSUNNEq1pFpcSGywE6K2Ta8sKIUWK2hRLfC47VDKRok-P7U0CqtDdrTJzWs_zRSTHl20NAxmorywlk2FlZIig2ID2uBjDNTrVXCjCX-1AL02qpc6G9VroxpQZ2F55us2fG5H6t4mtgozcLIBKJ_47CjoaN1aRucC2aQ7796J_wdB_oaW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69353761</pqid></control><display><type>article</type><title>Determining NMR flow propagator moments in porous rocks without the influence of relaxation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mitchell, J. ; Graf von der Schulenburg, D.A. ; Holland, D.J. ; Fordham, E.J. ; Johns, M.L. ; Gladden, L.F.</creator><creatorcontrib>Mitchell, J. ; Graf von der Schulenburg, D.A. ; Holland, D.J. ; Fordham, E.J. ; Johns, M.L. ; Gladden, L.F.</creatorcontrib><description>Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times, T 1 and T 2. These spin relaxation mechanisms normally result in a loss of signal that varies depending on the displacement ζ of the flowing spins, thereby preventing the acquisition of quantitative propagator data. The full relaxation behaviour of the system under flow needs to be characterised to enable the implementation of a true quantitative measurement. Two-dimensional NMR correlations of ζ − T 2 and T 1 − T 2 are used in combination to provide the flow propagators without relaxation weighting. T 1 − ζ correlations cannot be used due to the loss of T 1 information during the displacement observation time Δ. Here the moments of the propagators are extracted by statistical analysis of the full propagator shape. The measured displacements (first moments) are seen to correlate with the expected mean displacements for long observation times Δ. The higher order moments of the propagators determined by this method indicate those obtained previously using a correction were overestimated.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2008.05.001</identifier><identifier>PMID: 18514556</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Diffusion ; Displacement-T2 correlation ; Flow ; Geologic Sediments - analysis ; Geologic Sediments - chemistry ; Laplace–Fourier transform ; Magnetic Resonance Spectroscopy - methods ; Permeable rocks ; Propagators ; Relaxation ; Rheology - methods ; Salts - analysis ; Salts - chemistry ; T1-displacement correlation</subject><ispartof>Journal of magnetic resonance (1997), 2008-08, Vol.193 (2), p.218-225</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-37baa3936a0977be7b526595d118c9f7c0775c530b57254bd566971f69786a753</citedby><cites>FETCH-LOGICAL-c351t-37baa3936a0977be7b526595d118c9f7c0775c530b57254bd566971f69786a753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmr.2008.05.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18514556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitchell, J.</creatorcontrib><creatorcontrib>Graf von der Schulenburg, D.A.</creatorcontrib><creatorcontrib>Holland, D.J.</creatorcontrib><creatorcontrib>Fordham, E.J.</creatorcontrib><creatorcontrib>Johns, M.L.</creatorcontrib><creatorcontrib>Gladden, L.F.</creatorcontrib><title>Determining NMR flow propagator moments in porous rocks without the influence of relaxation</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times, T 1 and T 2. These spin relaxation mechanisms normally result in a loss of signal that varies depending on the displacement ζ of the flowing spins, thereby preventing the acquisition of quantitative propagator data. The full relaxation behaviour of the system under flow needs to be characterised to enable the implementation of a true quantitative measurement. Two-dimensional NMR correlations of ζ − T 2 and T 1 − T 2 are used in combination to provide the flow propagators without relaxation weighting. T 1 − ζ correlations cannot be used due to the loss of T 1 information during the displacement observation time Δ. Here the moments of the propagators are extracted by statistical analysis of the full propagator shape. The measured displacements (first moments) are seen to correlate with the expected mean displacements for long observation times Δ. The higher order moments of the propagators determined by this method indicate those obtained previously using a correction were overestimated.</description><subject>Algorithms</subject><subject>Diffusion</subject><subject>Displacement-T2 correlation</subject><subject>Flow</subject><subject>Geologic Sediments - analysis</subject><subject>Geologic Sediments - chemistry</subject><subject>Laplace–Fourier transform</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Permeable rocks</subject><subject>Propagators</subject><subject>Relaxation</subject><subject>Rheology - methods</subject><subject>Salts - analysis</subject><subject>Salts - chemistry</subject><subject>T1-displacement correlation</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhq0KVD7aH9BL5RO3pOMNYyfihPgolfiQqvbUg-U4E_CSxIvtAP339XZX4sbFY2meeTXzMPZFQClAyG_LcjmGcgFQl4AlgPjA9gU0soAa5c7_PxSqBrXHDmJcZkCggo9sT9QojhHlPvtzTonC6CY33fPbm5-8H_wLXwW_Mvcm-cBHP9KUIncTX_ng58iDt4-Rv7j04OfE0wPlXj_MNFnivueBBvNqkvPTJ7bbmyHS5209ZL8vL36dXRXXd99_nJ1eF7ZCkYpKtcZUTSUNNEq1pFpcSGywE6K2Ta8sKIUWK2hRLfC47VDKRok-P7U0CqtDdrTJzWs_zRSTHl20NAxmorywlk2FlZIig2ID2uBjDNTrVXCjCX-1AL02qpc6G9VroxpQZ2F55us2fG5H6t4mtgozcLIBKJ_47CjoaN1aRucC2aQ7796J_wdB_oaW</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Mitchell, J.</creator><creator>Graf von der Schulenburg, D.A.</creator><creator>Holland, D.J.</creator><creator>Fordham, E.J.</creator><creator>Johns, M.L.</creator><creator>Gladden, L.F.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080801</creationdate><title>Determining NMR flow propagator moments in porous rocks without the influence of relaxation</title><author>Mitchell, J. ; Graf von der Schulenburg, D.A. ; Holland, D.J. ; Fordham, E.J. ; Johns, M.L. ; Gladden, L.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-37baa3936a0977be7b526595d118c9f7c0775c530b57254bd566971f69786a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Diffusion</topic><topic>Displacement-T2 correlation</topic><topic>Flow</topic><topic>Geologic Sediments - analysis</topic><topic>Geologic Sediments - chemistry</topic><topic>Laplace–Fourier transform</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Permeable rocks</topic><topic>Propagators</topic><topic>Relaxation</topic><topic>Rheology - methods</topic><topic>Salts - analysis</topic><topic>Salts - chemistry</topic><topic>T1-displacement correlation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchell, J.</creatorcontrib><creatorcontrib>Graf von der Schulenburg, D.A.</creatorcontrib><creatorcontrib>Holland, D.J.</creatorcontrib><creatorcontrib>Fordham, E.J.</creatorcontrib><creatorcontrib>Johns, M.L.</creatorcontrib><creatorcontrib>Gladden, L.F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchell, J.</au><au>Graf von der Schulenburg, D.A.</au><au>Holland, D.J.</au><au>Fordham, E.J.</au><au>Johns, M.L.</au><au>Gladden, L.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining NMR flow propagator moments in porous rocks without the influence of relaxation</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>193</volume><issue>2</issue><spage>218</spage><epage>225</epage><pages>218-225</pages><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>Flow propagators, used for the study of advective motion of brine solution in porous carbonate and sandstone rocks, have been obtained without the influence of Nuclear Magnetic Resonance (NMR) relaxation times, T 1 and T 2. These spin relaxation mechanisms normally result in a loss of signal that varies depending on the displacement ζ of the flowing spins, thereby preventing the acquisition of quantitative propagator data. The full relaxation behaviour of the system under flow needs to be characterised to enable the implementation of a true quantitative measurement. Two-dimensional NMR correlations of ζ − T 2 and T 1 − T 2 are used in combination to provide the flow propagators without relaxation weighting. T 1 − ζ correlations cannot be used due to the loss of T 1 information during the displacement observation time Δ. Here the moments of the propagators are extracted by statistical analysis of the full propagator shape. The measured displacements (first moments) are seen to correlate with the expected mean displacements for long observation times Δ. The higher order moments of the propagators determined by this method indicate those obtained previously using a correction were overestimated.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18514556</pmid><doi>10.1016/j.jmr.2008.05.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1090-7807
ispartof Journal of magnetic resonance (1997), 2008-08, Vol.193 (2), p.218-225
issn 1090-7807
1096-0856
language eng
recordid cdi_proquest_miscellaneous_69353761
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Diffusion
Displacement-T2 correlation
Flow
Geologic Sediments - analysis
Geologic Sediments - chemistry
Laplace–Fourier transform
Magnetic Resonance Spectroscopy - methods
Permeable rocks
Propagators
Relaxation
Rheology - methods
Salts - analysis
Salts - chemistry
T1-displacement correlation
title Determining NMR flow propagator moments in porous rocks without the influence of relaxation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20NMR%20flow%20propagator%20moments%20in%20porous%20rocks%20without%20the%20influence%20of%20relaxation&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Mitchell,%20J.&rft.date=2008-08-01&rft.volume=193&rft.issue=2&rft.spage=218&rft.epage=225&rft.pages=218-225&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2008.05.001&rft_dat=%3Cproquest_cross%3E69353761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69353761&rft_id=info:pmid/18514556&rft_els_id=S1090780708001390&rfr_iscdi=true