Using streamlines to visualize acoustic energy flow across boundaries

For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2008-07, Vol.124 (1), p.48-56
1. Verfasser: Chapman, David M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 48
container_title The Journal of the Acoustical Society of America
container_volume 124
creator Chapman, David M. F.
description For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acoustic wavelengths) or if the stationary phase path is near the critical angle. In such cases, the entire acoustic field must be considered, including inhomogeneous waves associated with diffraction (i.e., those components that vanish with increasing frequency). The energy flow from a continuous-wave monopole point source across the boundary is visualized by tracing acoustic streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with the "Snell's law" or stationary phase path. Also, plots of acoustic energy streamlines do not display unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to Snell's law of refraction of ray paths across sound speed discontinuities. Examples include water-to-seabed transmission and water-to-air transmission.
doi_str_mv 10.1121/1.2931956
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69345733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69345733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-cf19e1e807eed90c7274465b83a126c7d8b2c0fbd45cb83c2452e911bd19b1ae3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7vpx8A9ILwoeumby1eYiiPgFC170HNJ0ukS67Zq0yvrrrbtFvXga5uXhneEh5AToDIDBJcyY5qCl2iFTkIymuWRil0wppZAKrdSEHMT4Oqwy53qfTCBXQmkppuT2JfpmkcQuoF3WvsGYdG3y7mNva_-JiXVtHzvvEmwwLNZJVbcfQxjaGJOi7ZvSBo_xiOxVto54PM5D8nJ3-3zzkM6f7h9vruep4yrvUleBRsCcZoilpi5jmRBKFjm3wJTLyrxgjlZFKaQbQseEZKgBihJ0ARb5ITnf9q5C-9Zj7MzSR4d1bRsc_jRKcyEzzgfwYgtuPg1YmVXwSxvWBqj5dmbAjM4G9nQs7Ysllr_kKGkAzkbARmfrKtjG-fjDMSqZzDQduKstF53vbOfb5v-rG-3mj3bTtfwLRjiJfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69345733</pqid></control><display><type>article</type><title>Using streamlines to visualize acoustic energy flow across boundaries</title><source>AIP Journals Complete</source><source>Acoustical Society of America (AIP)</source><source>Alma/SFX Local Collection</source><creator>Chapman, David M. F.</creator><creatorcontrib>Chapman, David M. F.</creatorcontrib><description>For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acoustic wavelengths) or if the stationary phase path is near the critical angle. In such cases, the entire acoustic field must be considered, including inhomogeneous waves associated with diffraction (i.e., those components that vanish with increasing frequency). The energy flow from a continuous-wave monopole point source across the boundary is visualized by tracing acoustic streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with the "Snell's law" or stationary phase path. Also, plots of acoustic energy streamlines do not display unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to Snell's law of refraction of ray paths across sound speed discontinuities. Examples include water-to-seabed transmission and water-to-air transmission.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.2931956</identifier><identifier>PMID: 18646954</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Linear acoustics ; Physics ; Underwater sound</subject><ispartof>The Journal of the Acoustical Society of America, 2008-07, Vol.124 (1), p.48-56</ispartof><rights>2008 Acoustical Society of America</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-cf19e1e807eed90c7274465b83a126c7d8b2c0fbd45cb83c2452e911bd19b1ae3</citedby><cites>FETCH-LOGICAL-c368t-cf19e1e807eed90c7274465b83a126c7d8b2c0fbd45cb83c2452e911bd19b1ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.2931956$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20525790$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18646954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapman, David M. F.</creatorcontrib><title>Using streamlines to visualize acoustic energy flow across boundaries</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acoustic wavelengths) or if the stationary phase path is near the critical angle. In such cases, the entire acoustic field must be considered, including inhomogeneous waves associated with diffraction (i.e., those components that vanish with increasing frequency). The energy flow from a continuous-wave monopole point source across the boundary is visualized by tracing acoustic streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with the "Snell's law" or stationary phase path. Also, plots of acoustic energy streamlines do not display unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to Snell's law of refraction of ray paths across sound speed discontinuities. Examples include water-to-seabed transmission and water-to-air transmission.</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linear acoustics</subject><subject>Physics</subject><subject>Underwater sound</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMo7vpx8A9ILwoeumby1eYiiPgFC170HNJ0ukS67Zq0yvrrrbtFvXga5uXhneEh5AToDIDBJcyY5qCl2iFTkIymuWRil0wppZAKrdSEHMT4Oqwy53qfTCBXQmkppuT2JfpmkcQuoF3WvsGYdG3y7mNva_-JiXVtHzvvEmwwLNZJVbcfQxjaGJOi7ZvSBo_xiOxVto54PM5D8nJ3-3zzkM6f7h9vruep4yrvUleBRsCcZoilpi5jmRBKFjm3wJTLyrxgjlZFKaQbQseEZKgBihJ0ARb5ITnf9q5C-9Zj7MzSR4d1bRsc_jRKcyEzzgfwYgtuPg1YmVXwSxvWBqj5dmbAjM4G9nQs7Ysllr_kKGkAzkbARmfrKtjG-fjDMSqZzDQduKstF53vbOfb5v-rG-3mj3bTtfwLRjiJfA</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Chapman, David M. F.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Using streamlines to visualize acoustic energy flow across boundaries</title><author>Chapman, David M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-cf19e1e807eed90c7274465b83a126c7d8b2c0fbd45cb83c2452e911bd19b1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linear acoustics</topic><topic>Physics</topic><topic>Underwater sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, David M. F.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, David M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using streamlines to visualize acoustic energy flow across boundaries</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>124</volume><issue>1</issue><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acoustic wavelengths) or if the stationary phase path is near the critical angle. In such cases, the entire acoustic field must be considered, including inhomogeneous waves associated with diffraction (i.e., those components that vanish with increasing frequency). The energy flow from a continuous-wave monopole point source across the boundary is visualized by tracing acoustic streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with the "Snell's law" or stationary phase path. Also, plots of acoustic energy streamlines do not display unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to Snell's law of refraction of ray paths across sound speed discontinuities. Examples include water-to-seabed transmission and water-to-air transmission.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>18646954</pmid><doi>10.1121/1.2931956</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2008-07, Vol.124 (1), p.48-56
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_69345733
source AIP Journals Complete; Acoustical Society of America (AIP); Alma/SFX Local Collection
subjects Acoustics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Linear acoustics
Physics
Underwater sound
title Using streamlines to visualize acoustic energy flow across boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20streamlines%20to%20visualize%20acoustic%20energy%20flow%20across%20boundaries&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Chapman,%20David%20M.%20F.&rft.date=2008-07-01&rft.volume=124&rft.issue=1&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.2931956&rft_dat=%3Cproquest_cross%3E69345733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69345733&rft_id=info:pmid/18646954&rfr_iscdi=true