Using streamlines to visualize acoustic energy flow across boundaries
For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acou...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2008-07, Vol.124 (1), p.48-56 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 48 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 124 |
creator | Chapman, David M. F. |
description | For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acoustic wavelengths) or if the stationary phase path is near the critical angle. In such cases, the entire acoustic field must be considered, including inhomogeneous waves associated with diffraction (i.e., those components that vanish with increasing frequency). The energy flow from a continuous-wave monopole point source across the boundary is visualized by tracing acoustic streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with the "Snell's law" or stationary phase path. Also, plots of acoustic energy streamlines do not display unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to Snell's law of refraction of ray paths across sound speed discontinuities. Examples include water-to-seabed transmission and water-to-air transmission. |
doi_str_mv | 10.1121/1.2931956 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69345733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69345733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-cf19e1e807eed90c7274465b83a126c7d8b2c0fbd45cb83c2452e911bd19b1ae3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7vpx8A9ILwoeumby1eYiiPgFC170HNJ0ukS67Zq0yvrrrbtFvXga5uXhneEh5AToDIDBJcyY5qCl2iFTkIymuWRil0wppZAKrdSEHMT4Oqwy53qfTCBXQmkppuT2JfpmkcQuoF3WvsGYdG3y7mNva_-JiXVtHzvvEmwwLNZJVbcfQxjaGJOi7ZvSBo_xiOxVto54PM5D8nJ3-3zzkM6f7h9vruep4yrvUleBRsCcZoilpi5jmRBKFjm3wJTLyrxgjlZFKaQbQseEZKgBihJ0ARb5ITnf9q5C-9Zj7MzSR4d1bRsc_jRKcyEzzgfwYgtuPg1YmVXwSxvWBqj5dmbAjM4G9nQs7Ysllr_kKGkAzkbARmfrKtjG-fjDMSqZzDQduKstF53vbOfb5v-rG-3mj3bTtfwLRjiJfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69345733</pqid></control><display><type>article</type><title>Using streamlines to visualize acoustic energy flow across boundaries</title><source>AIP Journals Complete</source><source>Acoustical Society of America (AIP)</source><source>Alma/SFX Local Collection</source><creator>Chapman, David M. F.</creator><creatorcontrib>Chapman, David M. F.</creatorcontrib><description>For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acoustic wavelengths) or if the stationary phase path is near the critical angle. In such cases, the entire acoustic field must be considered, including inhomogeneous waves associated with diffraction (i.e., those components that vanish with increasing frequency). The energy flow from a continuous-wave monopole point source across the boundary is visualized by tracing acoustic streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with the "Snell's law" or stationary phase path. Also, plots of acoustic energy streamlines do not display unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to Snell's law of refraction of ray paths across sound speed discontinuities. Examples include water-to-seabed transmission and water-to-air transmission.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.2931956</identifier><identifier>PMID: 18646954</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Linear acoustics ; Physics ; Underwater sound</subject><ispartof>The Journal of the Acoustical Society of America, 2008-07, Vol.124 (1), p.48-56</ispartof><rights>2008 Acoustical Society of America</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-cf19e1e807eed90c7274465b83a126c7d8b2c0fbd45cb83c2452e911bd19b1ae3</citedby><cites>FETCH-LOGICAL-c368t-cf19e1e807eed90c7274465b83a126c7d8b2c0fbd45cb83c2452e911bd19b1ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.2931956$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20525790$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18646954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapman, David M. F.</creatorcontrib><title>Using streamlines to visualize acoustic energy flow across boundaries</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acoustic wavelengths) or if the stationary phase path is near the critical angle. In such cases, the entire acoustic field must be considered, including inhomogeneous waves associated with diffraction (i.e., those components that vanish with increasing frequency). The energy flow from a continuous-wave monopole point source across the boundary is visualized by tracing acoustic streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with the "Snell's law" or stationary phase path. Also, plots of acoustic energy streamlines do not display unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to Snell's law of refraction of ray paths across sound speed discontinuities. Examples include water-to-seabed transmission and water-to-air transmission.</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Linear acoustics</subject><subject>Physics</subject><subject>Underwater sound</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMo7vpx8A9ILwoeumby1eYiiPgFC170HNJ0ukS67Zq0yvrrrbtFvXga5uXhneEh5AToDIDBJcyY5qCl2iFTkIymuWRil0wppZAKrdSEHMT4Oqwy53qfTCBXQmkppuT2JfpmkcQuoF3WvsGYdG3y7mNva_-JiXVtHzvvEmwwLNZJVbcfQxjaGJOi7ZvSBo_xiOxVto54PM5D8nJ3-3zzkM6f7h9vruep4yrvUleBRsCcZoilpi5jmRBKFjm3wJTLyrxgjlZFKaQbQseEZKgBihJ0ARb5ITnf9q5C-9Zj7MzSR4d1bRsc_jRKcyEzzgfwYgtuPg1YmVXwSxvWBqj5dmbAjM4G9nQs7Ysllr_kKGkAzkbARmfrKtjG-fjDMSqZzDQduKstF53vbOfb5v-rG-3mj3bTtfwLRjiJfA</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Chapman, David M. F.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Using streamlines to visualize acoustic energy flow across boundaries</title><author>Chapman, David M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-cf19e1e807eed90c7274465b83a126c7d8b2c0fbd45cb83c2452e911bd19b1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Linear acoustics</topic><topic>Physics</topic><topic>Underwater sound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, David M. F.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, David M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using streamlines to visualize acoustic energy flow across boundaries</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>124</volume><issue>1</issue><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>For spherical waves that radiate from a point source in a homogeneous fluid and propagate across a plane boundary into a dissimilar homogeneous fluid, the acoustic field may differ significantly from the geometric acoustic approximation if either the source or receiver is near the interface (in acoustic wavelengths) or if the stationary phase path is near the critical angle. In such cases, the entire acoustic field must be considered, including inhomogeneous waves associated with diffraction (i.e., those components that vanish with increasing frequency). The energy flow from a continuous-wave monopole point source across the boundary is visualized by tracing acoustic streamlines: those curves whose tangent at every point is parallel to the local acoustic intensity vector, averaged over a wave cycle. It is seen that the acoustic energy flow is not always in line with the "Snell's law" or stationary phase path. Also, plots of acoustic energy streamlines do not display unusual behavior in the vicinity of the critical angle. Finally, it is shown that there exists a law of refraction of acoustic energy streamlines at boundaries with density discontinuities analogous to Snell's law of refraction of ray paths across sound speed discontinuities. Examples include water-to-seabed transmission and water-to-air transmission.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>18646954</pmid><doi>10.1121/1.2931956</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2008-07, Vol.124 (1), p.48-56 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_69345733 |
source | AIP Journals Complete; Acoustical Society of America (AIP); Alma/SFX Local Collection |
subjects | Acoustics Exact sciences and technology Fundamental areas of phenomenology (including applications) Linear acoustics Physics Underwater sound |
title | Using streamlines to visualize acoustic energy flow across boundaries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20streamlines%20to%20visualize%20acoustic%20energy%20flow%20across%20boundaries&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Chapman,%20David%20M.%20F.&rft.date=2008-07-01&rft.volume=124&rft.issue=1&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.2931956&rft_dat=%3Cproquest_cross%3E69345733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69345733&rft_id=info:pmid/18646954&rfr_iscdi=true |