Direct visualization of colloidal gelation under confinement

The physical mechanism of colloidal gelation remains inadequately understood, particularly for intermediate to high volume fractions. Experiments to directly probe the complex evolution of structural and viscoelastic properties of gels have been few despite their fundamental importance in elucidatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2008-06, Vol.77 (6 Pt 1), p.061406-061406, Article 061406
Hauptverfasser: Sarangapani, Prasad S, Yu, Yanghai, Zhao, Jiang, Zhu, Yingxi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 061406
container_issue 6 Pt 1
container_start_page 061406
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 77
creator Sarangapani, Prasad S
Yu, Yanghai
Zhao, Jiang
Zhu, Yingxi
description The physical mechanism of colloidal gelation remains inadequately understood, particularly for intermediate to high volume fractions. Experiments to directly probe the complex evolution of structural and viscoelastic properties of gels have been few despite their fundamental importance in elucidating the physical mechanisms responsible for gelation. In this study, we use a home-built micron-gap rheometer combined with confocal microscopy to directly investigate the coupled structural and dynamic properties of colloidal gelation transition by spatial confinement. We observe that confinement-induced gelation proceeds by a spinodal decomposition route where strongly confined colloidal suspensions evolve into "colloid-rich" and "colloid-poor" regions; the propagation of the "colloid-rich" region in three dimensions is responsible for structural arrest and strong viscoelastic enhancement when a critical film thickness approaches 16-25 particle layers.
doi_str_mv 10.1103/PhysRevE.77.061406
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69331199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69331199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-d37f41a7de3e1f981a847e333cf75ba74bb72cf0c47a166335e4379b70ce2e6d3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EoqXwAhxQTtxS7KxjJxIXBOVHqgRCcLYcZw1GTlLspFJ5elqliNOsZmfm8BFyzuicMQpXL5-b-IrrxVzKORWMU3FApizPaZqBFIe7G8oUZJ5PyEmMX5RCBgU_JhNWCA6ZyKfk-s4FNH2ydnHQ3v3o3nVt0tnEdN53rtY--UA_ukNbY9g-WutabLDtT8mR1T7i2V5n5P1-8Xb7mC6fH55ub5apAcr6tAZpOdOyRkBmy4LpgksEAGNlXmnJq0pmxlLDpWZCAOTIQZaVpAYzFDXMyOW4uwrd94CxV42LBr3XLXZDVKIEYKwst8FsDJrQxRjQqlVwjQ4bxajaMVN_zJSUamS2LV3s14eqwfq_socEvwGmafA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69331199</pqid></control><display><type>article</type><title>Direct visualization of colloidal gelation under confinement</title><source>American Physical Society</source><creator>Sarangapani, Prasad S ; Yu, Yanghai ; Zhao, Jiang ; Zhu, Yingxi</creator><creatorcontrib>Sarangapani, Prasad S ; Yu, Yanghai ; Zhao, Jiang ; Zhu, Yingxi</creatorcontrib><description>The physical mechanism of colloidal gelation remains inadequately understood, particularly for intermediate to high volume fractions. Experiments to directly probe the complex evolution of structural and viscoelastic properties of gels have been few despite their fundamental importance in elucidating the physical mechanisms responsible for gelation. In this study, we use a home-built micron-gap rheometer combined with confocal microscopy to directly investigate the coupled structural and dynamic properties of colloidal gelation transition by spatial confinement. We observe that confinement-induced gelation proceeds by a spinodal decomposition route where strongly confined colloidal suspensions evolve into "colloid-rich" and "colloid-poor" regions; the propagation of the "colloid-rich" region in three dimensions is responsible for structural arrest and strong viscoelastic enhancement when a critical film thickness approaches 16-25 particle layers.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.77.061406</identifier><identifier>PMID: 18643265</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2008-06, Vol.77 (6 Pt 1), p.061406-061406, Article 061406</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-d37f41a7de3e1f981a847e333cf75ba74bb72cf0c47a166335e4379b70ce2e6d3</citedby><cites>FETCH-LOGICAL-c301t-d37f41a7de3e1f981a847e333cf75ba74bb72cf0c47a166335e4379b70ce2e6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18643265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarangapani, Prasad S</creatorcontrib><creatorcontrib>Yu, Yanghai</creatorcontrib><creatorcontrib>Zhao, Jiang</creatorcontrib><creatorcontrib>Zhu, Yingxi</creatorcontrib><title>Direct visualization of colloidal gelation under confinement</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The physical mechanism of colloidal gelation remains inadequately understood, particularly for intermediate to high volume fractions. Experiments to directly probe the complex evolution of structural and viscoelastic properties of gels have been few despite their fundamental importance in elucidating the physical mechanisms responsible for gelation. In this study, we use a home-built micron-gap rheometer combined with confocal microscopy to directly investigate the coupled structural and dynamic properties of colloidal gelation transition by spatial confinement. We observe that confinement-induced gelation proceeds by a spinodal decomposition route where strongly confined colloidal suspensions evolve into "colloid-rich" and "colloid-poor" regions; the propagation of the "colloid-rich" region in three dimensions is responsible for structural arrest and strong viscoelastic enhancement when a critical film thickness approaches 16-25 particle layers.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EoqXwAhxQTtxS7KxjJxIXBOVHqgRCcLYcZw1GTlLspFJ5elqliNOsZmfm8BFyzuicMQpXL5-b-IrrxVzKORWMU3FApizPaZqBFIe7G8oUZJ5PyEmMX5RCBgU_JhNWCA6ZyKfk-s4FNH2ydnHQ3v3o3nVt0tnEdN53rtY--UA_ukNbY9g-WutabLDtT8mR1T7i2V5n5P1-8Xb7mC6fH55ub5apAcr6tAZpOdOyRkBmy4LpgksEAGNlXmnJq0pmxlLDpWZCAOTIQZaVpAYzFDXMyOW4uwrd94CxV42LBr3XLXZDVKIEYKwst8FsDJrQxRjQqlVwjQ4bxajaMVN_zJSUamS2LV3s14eqwfq_socEvwGmafA</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Sarangapani, Prasad S</creator><creator>Yu, Yanghai</creator><creator>Zhao, Jiang</creator><creator>Zhu, Yingxi</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080601</creationdate><title>Direct visualization of colloidal gelation under confinement</title><author>Sarangapani, Prasad S ; Yu, Yanghai ; Zhao, Jiang ; Zhu, Yingxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-d37f41a7de3e1f981a847e333cf75ba74bb72cf0c47a166335e4379b70ce2e6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Sarangapani, Prasad S</creatorcontrib><creatorcontrib>Yu, Yanghai</creatorcontrib><creatorcontrib>Zhao, Jiang</creatorcontrib><creatorcontrib>Zhu, Yingxi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarangapani, Prasad S</au><au>Yu, Yanghai</au><au>Zhao, Jiang</au><au>Zhu, Yingxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct visualization of colloidal gelation under confinement</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2008-06-01</date><risdate>2008</risdate><volume>77</volume><issue>6 Pt 1</issue><spage>061406</spage><epage>061406</epage><pages>061406-061406</pages><artnum>061406</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The physical mechanism of colloidal gelation remains inadequately understood, particularly for intermediate to high volume fractions. Experiments to directly probe the complex evolution of structural and viscoelastic properties of gels have been few despite their fundamental importance in elucidating the physical mechanisms responsible for gelation. In this study, we use a home-built micron-gap rheometer combined with confocal microscopy to directly investigate the coupled structural and dynamic properties of colloidal gelation transition by spatial confinement. We observe that confinement-induced gelation proceeds by a spinodal decomposition route where strongly confined colloidal suspensions evolve into "colloid-rich" and "colloid-poor" regions; the propagation of the "colloid-rich" region in three dimensions is responsible for structural arrest and strong viscoelastic enhancement when a critical film thickness approaches 16-25 particle layers.</abstract><cop>United States</cop><pmid>18643265</pmid><doi>10.1103/PhysRevE.77.061406</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2008-06, Vol.77 (6 Pt 1), p.061406-061406, Article 061406
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_69331199
source American Physical Society
title Direct visualization of colloidal gelation under confinement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20visualization%20of%20colloidal%20gelation%20under%20confinement&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Sarangapani,%20Prasad%20S&rft.date=2008-06-01&rft.volume=77&rft.issue=6%20Pt%201&rft.spage=061406&rft.epage=061406&rft.pages=061406-061406&rft.artnum=061406&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.77.061406&rft_dat=%3Cproquest_cross%3E69331199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69331199&rft_id=info:pmid/18643265&rfr_iscdi=true