Iontophoretic β‐adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo

With the advent of numerous candidate drugs for therapy in cystic fibrosis (CF), there is an urgent need for easily interpretable assays for testing their therapeutic value. Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) abolished β‐adrenergic but not cholinergic sweating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental physiology 2008-08, Vol.93 (8), p.969-981
Hauptverfasser: Shamsuddin, A. K. M., Reddy, M. M., Quinton, P. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 981
container_issue 8
container_start_page 969
container_title Experimental physiology
container_volume 93
creator Shamsuddin, A. K. M.
Reddy, M. M.
Quinton, P. M.
description With the advent of numerous candidate drugs for therapy in cystic fibrosis (CF), there is an urgent need for easily interpretable assays for testing their therapeutic value. Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) abolished β‐adrenergic but not cholinergic sweating in CF. Therefore, the β‐adrenergic response of the sweat gland may serve both as an in vivo diagnostic tool for CF and as a quantitative assay for testing the efficacy of new drugs designed to restore CFTR function in CF. Hence, with the objective of defining optimal conditions for stimulating β‐adrenergic sweating, we have investigated the components and pharmacology of sweat secretion using cell cultures and intact sweat glands. We studied the electrical responses and ionic mechanisms involved in β‐adrenergic and cholinergic sweating. We also tested the efficacy of different β‐adrenergic agonists. Our results indicated that in normal subjects the cholinergic secretory response is mediated by activation of Ca2+‐dependent Cl− conductance as well as K+ conductances. In contrast, the β‐adrenergic secretory response is mediated exclusively by activation of a cAMP‐dependent CFTR Cl− conductance without a concurrent activation of a K+ conductance. Thus, the electrochemical driving forces generated by β‐adrenergic agonists are significantly smaller compared with those generated by cholinergic agonists, which in turn reflects in smaller β‐adrenergic secretory responses compared with cholinergic secretory responses. Furthermore, the β‐adrenergic agonists, isoproprenaline and salbutamol, induced sweat secretion only when applied in combination with an adenylyl cyclase activator (forskolin) or a phosphodiesterase inhibitor (3‐isobutyl‐1‐methylxanthine, aminophylline or theophylline). We surmise that to obtain consistent β‐adrenergic sweat responses, levels of intracellular cAMP above that achievable with a β‐adrenergic agonist alone are essential. β‐Adrenergic secretion can be stimulated in vivo by concurrent iontophoresis of these drugs in normal, but not in CF, subjects.
doi_str_mv 10.1113/expphysiol.2008.042283
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69330994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891873099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4416-8cac3a368603d94b315fc863724aa6b37cb00fcb9fe6c4e502bb7a7a362b69f83</originalsourceid><addsrcrecordid>eNqNkUFu1DAYhS0EokPhCpVXiE0GO3YcpztUFVqpEixAYhfZjjNjlNjBvzMlO47AknNwEA7BSXA0I3WHWP2y9L1nPX0IXVCypZSy1_bbNO0XcGHYloTILeFlKdkjtKFcNAXn1efHaEOaShZE1OQMPQP4QghlRPKn6IxKzilj1Qb9vA0-hWkfok3O4N-__nz_obpovY27_IbkxnlQyQWPQ4_386g8hnurEt4NyndwiacA4PRgsQJQC-5DxGaBtax3OgZwgFNUHkY76nwtNsF3s0nKG4uj3a31OaNMcgeXFuw8PrhDeI6e9GoA--J0z9Gnt9cfr26Ku_fvbq_e3BUmTxCFNMowxYQUhHUN14xWvZGC1SVXSmhWG01Ib3TTW2G4rUipda3qnCi1aHrJztHLY-8Uw9fZQmpHB8YOeZ0NM7SiYYw0Dc_gq3-CVDZU1iubUXFETd4P0fbtFN2o4tJS0q762gd97aqvPerLwYvTH7MebfcQO_nKwOURuHeDXf6ztr3-cFMxwf4Cs7azBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891873099</pqid></control><display><type>article</type><title>Iontophoretic β‐adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Shamsuddin, A. K. M. ; Reddy, M. M. ; Quinton, P. M.</creator><creatorcontrib>Shamsuddin, A. K. M. ; Reddy, M. M. ; Quinton, P. M.</creatorcontrib><description>With the advent of numerous candidate drugs for therapy in cystic fibrosis (CF), there is an urgent need for easily interpretable assays for testing their therapeutic value. Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) abolished β‐adrenergic but not cholinergic sweating in CF. Therefore, the β‐adrenergic response of the sweat gland may serve both as an in vivo diagnostic tool for CF and as a quantitative assay for testing the efficacy of new drugs designed to restore CFTR function in CF. Hence, with the objective of defining optimal conditions for stimulating β‐adrenergic sweating, we have investigated the components and pharmacology of sweat secretion using cell cultures and intact sweat glands. We studied the electrical responses and ionic mechanisms involved in β‐adrenergic and cholinergic sweating. We also tested the efficacy of different β‐adrenergic agonists. Our results indicated that in normal subjects the cholinergic secretory response is mediated by activation of Ca2+‐dependent Cl− conductance as well as K+ conductances. In contrast, the β‐adrenergic secretory response is mediated exclusively by activation of a cAMP‐dependent CFTR Cl− conductance without a concurrent activation of a K+ conductance. Thus, the electrochemical driving forces generated by β‐adrenergic agonists are significantly smaller compared with those generated by cholinergic agonists, which in turn reflects in smaller β‐adrenergic secretory responses compared with cholinergic secretory responses. Furthermore, the β‐adrenergic agonists, isoproprenaline and salbutamol, induced sweat secretion only when applied in combination with an adenylyl cyclase activator (forskolin) or a phosphodiesterase inhibitor (3‐isobutyl‐1‐methylxanthine, aminophylline or theophylline). We surmise that to obtain consistent β‐adrenergic sweat responses, levels of intracellular cAMP above that achievable with a β‐adrenergic agonist alone are essential. β‐Adrenergic secretion can be stimulated in vivo by concurrent iontophoresis of these drugs in normal, but not in CF, subjects.</description><identifier>ISSN: 0958-0670</identifier><identifier>EISSN: 1469-445X</identifier><identifier>DOI: 10.1113/expphysiol.2008.042283</identifier><identifier>PMID: 18441335</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adrenergic beta-Agonists - pharmacology ; Adrenergic beta-Antagonists - pharmacology ; Albuterol - pharmacology ; Aminophylline - pharmacology ; Calcium - metabolism ; Cells, Cultured ; Cystic Fibrosis - diagnosis ; Cystic Fibrosis - metabolism ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Electric Stimulation ; Humans ; Iontophoresis - methods ; Male ; Membrane Potentials - drug effects ; Receptors, Adrenergic, beta - drug effects ; Receptors, Adrenergic, beta - metabolism ; Sweat Glands - cytology ; Sweat Glands - metabolism ; Sweat Glands - pathology</subject><ispartof>Experimental physiology, 2008-08, Vol.93 (8), p.969-981</ispartof><rights>2008 The Authors. Journal compilation © 2008 The Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4416-8cac3a368603d94b315fc863724aa6b37cb00fcb9fe6c4e502bb7a7a362b69f83</citedby><cites>FETCH-LOGICAL-c4416-8cac3a368603d94b315fc863724aa6b37cb00fcb9fe6c4e502bb7a7a362b69f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1113%2Fexpphysiol.2008.042283$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1113%2Fexpphysiol.2008.042283$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18441335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shamsuddin, A. K. M.</creatorcontrib><creatorcontrib>Reddy, M. M.</creatorcontrib><creatorcontrib>Quinton, P. M.</creatorcontrib><title>Iontophoretic β‐adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo</title><title>Experimental physiology</title><addtitle>Exp Physiol</addtitle><description>With the advent of numerous candidate drugs for therapy in cystic fibrosis (CF), there is an urgent need for easily interpretable assays for testing their therapeutic value. Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) abolished β‐adrenergic but not cholinergic sweating in CF. Therefore, the β‐adrenergic response of the sweat gland may serve both as an in vivo diagnostic tool for CF and as a quantitative assay for testing the efficacy of new drugs designed to restore CFTR function in CF. Hence, with the objective of defining optimal conditions for stimulating β‐adrenergic sweating, we have investigated the components and pharmacology of sweat secretion using cell cultures and intact sweat glands. We studied the electrical responses and ionic mechanisms involved in β‐adrenergic and cholinergic sweating. We also tested the efficacy of different β‐adrenergic agonists. Our results indicated that in normal subjects the cholinergic secretory response is mediated by activation of Ca2+‐dependent Cl− conductance as well as K+ conductances. In contrast, the β‐adrenergic secretory response is mediated exclusively by activation of a cAMP‐dependent CFTR Cl− conductance without a concurrent activation of a K+ conductance. Thus, the electrochemical driving forces generated by β‐adrenergic agonists are significantly smaller compared with those generated by cholinergic agonists, which in turn reflects in smaller β‐adrenergic secretory responses compared with cholinergic secretory responses. Furthermore, the β‐adrenergic agonists, isoproprenaline and salbutamol, induced sweat secretion only when applied in combination with an adenylyl cyclase activator (forskolin) or a phosphodiesterase inhibitor (3‐isobutyl‐1‐methylxanthine, aminophylline or theophylline). We surmise that to obtain consistent β‐adrenergic sweat responses, levels of intracellular cAMP above that achievable with a β‐adrenergic agonist alone are essential. β‐Adrenergic secretion can be stimulated in vivo by concurrent iontophoresis of these drugs in normal, but not in CF, subjects.</description><subject>Adrenergic beta-Agonists - pharmacology</subject><subject>Adrenergic beta-Antagonists - pharmacology</subject><subject>Albuterol - pharmacology</subject><subject>Aminophylline - pharmacology</subject><subject>Calcium - metabolism</subject><subject>Cells, Cultured</subject><subject>Cystic Fibrosis - diagnosis</subject><subject>Cystic Fibrosis - metabolism</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Electric Stimulation</subject><subject>Humans</subject><subject>Iontophoresis - methods</subject><subject>Male</subject><subject>Membrane Potentials - drug effects</subject><subject>Receptors, Adrenergic, beta - drug effects</subject><subject>Receptors, Adrenergic, beta - metabolism</subject><subject>Sweat Glands - cytology</subject><subject>Sweat Glands - metabolism</subject><subject>Sweat Glands - pathology</subject><issn>0958-0670</issn><issn>1469-445X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFu1DAYhS0EokPhCpVXiE0GO3YcpztUFVqpEixAYhfZjjNjlNjBvzMlO47AknNwEA7BSXA0I3WHWP2y9L1nPX0IXVCypZSy1_bbNO0XcGHYloTILeFlKdkjtKFcNAXn1efHaEOaShZE1OQMPQP4QghlRPKn6IxKzilj1Qb9vA0-hWkfok3O4N-__nz_obpovY27_IbkxnlQyQWPQ4_386g8hnurEt4NyndwiacA4PRgsQJQC-5DxGaBtax3OgZwgFNUHkY76nwtNsF3s0nKG4uj3a31OaNMcgeXFuw8PrhDeI6e9GoA--J0z9Gnt9cfr26Ku_fvbq_e3BUmTxCFNMowxYQUhHUN14xWvZGC1SVXSmhWG01Ib3TTW2G4rUipda3qnCi1aHrJztHLY-8Uw9fZQmpHB8YOeZ0NM7SiYYw0Dc_gq3-CVDZU1iubUXFETd4P0fbtFN2o4tJS0q762gd97aqvPerLwYvTH7MebfcQO_nKwOURuHeDXf6ztr3-cFMxwf4Cs7azBA</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Shamsuddin, A. K. M.</creator><creator>Reddy, M. M.</creator><creator>Quinton, P. M.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200808</creationdate><title>Iontophoretic β‐adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo</title><author>Shamsuddin, A. K. M. ; Reddy, M. M. ; Quinton, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4416-8cac3a368603d94b315fc863724aa6b37cb00fcb9fe6c4e502bb7a7a362b69f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adrenergic beta-Agonists - pharmacology</topic><topic>Adrenergic beta-Antagonists - pharmacology</topic><topic>Albuterol - pharmacology</topic><topic>Aminophylline - pharmacology</topic><topic>Calcium - metabolism</topic><topic>Cells, Cultured</topic><topic>Cystic Fibrosis - diagnosis</topic><topic>Cystic Fibrosis - metabolism</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Electric Stimulation</topic><topic>Humans</topic><topic>Iontophoresis - methods</topic><topic>Male</topic><topic>Membrane Potentials - drug effects</topic><topic>Receptors, Adrenergic, beta - drug effects</topic><topic>Receptors, Adrenergic, beta - metabolism</topic><topic>Sweat Glands - cytology</topic><topic>Sweat Glands - metabolism</topic><topic>Sweat Glands - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamsuddin, A. K. M.</creatorcontrib><creatorcontrib>Reddy, M. M.</creatorcontrib><creatorcontrib>Quinton, P. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamsuddin, A. K. M.</au><au>Reddy, M. M.</au><au>Quinton, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iontophoretic β‐adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo</atitle><jtitle>Experimental physiology</jtitle><addtitle>Exp Physiol</addtitle><date>2008-08</date><risdate>2008</risdate><volume>93</volume><issue>8</issue><spage>969</spage><epage>981</epage><pages>969-981</pages><issn>0958-0670</issn><eissn>1469-445X</eissn><abstract>With the advent of numerous candidate drugs for therapy in cystic fibrosis (CF), there is an urgent need for easily interpretable assays for testing their therapeutic value. Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) abolished β‐adrenergic but not cholinergic sweating in CF. Therefore, the β‐adrenergic response of the sweat gland may serve both as an in vivo diagnostic tool for CF and as a quantitative assay for testing the efficacy of new drugs designed to restore CFTR function in CF. Hence, with the objective of defining optimal conditions for stimulating β‐adrenergic sweating, we have investigated the components and pharmacology of sweat secretion using cell cultures and intact sweat glands. We studied the electrical responses and ionic mechanisms involved in β‐adrenergic and cholinergic sweating. We also tested the efficacy of different β‐adrenergic agonists. Our results indicated that in normal subjects the cholinergic secretory response is mediated by activation of Ca2+‐dependent Cl− conductance as well as K+ conductances. In contrast, the β‐adrenergic secretory response is mediated exclusively by activation of a cAMP‐dependent CFTR Cl− conductance without a concurrent activation of a K+ conductance. Thus, the electrochemical driving forces generated by β‐adrenergic agonists are significantly smaller compared with those generated by cholinergic agonists, which in turn reflects in smaller β‐adrenergic secretory responses compared with cholinergic secretory responses. Furthermore, the β‐adrenergic agonists, isoproprenaline and salbutamol, induced sweat secretion only when applied in combination with an adenylyl cyclase activator (forskolin) or a phosphodiesterase inhibitor (3‐isobutyl‐1‐methylxanthine, aminophylline or theophylline). We surmise that to obtain consistent β‐adrenergic sweat responses, levels of intracellular cAMP above that achievable with a β‐adrenergic agonist alone are essential. β‐Adrenergic secretion can be stimulated in vivo by concurrent iontophoresis of these drugs in normal, but not in CF, subjects.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18441335</pmid><doi>10.1113/expphysiol.2008.042283</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0958-0670
ispartof Experimental physiology, 2008-08, Vol.93 (8), p.969-981
issn 0958-0670
1469-445X
language eng
recordid cdi_proquest_miscellaneous_69330994
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Adrenergic beta-Agonists - pharmacology
Adrenergic beta-Antagonists - pharmacology
Albuterol - pharmacology
Aminophylline - pharmacology
Calcium - metabolism
Cells, Cultured
Cystic Fibrosis - diagnosis
Cystic Fibrosis - metabolism
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Electric Stimulation
Humans
Iontophoresis - methods
Male
Membrane Potentials - drug effects
Receptors, Adrenergic, beta - drug effects
Receptors, Adrenergic, beta - metabolism
Sweat Glands - cytology
Sweat Glands - metabolism
Sweat Glands - pathology
title Iontophoretic β‐adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iontophoretic%20%CE%B2%E2%80%90adrenergic%20stimulation%20of%20human%20sweat%20glands:%20possible%20assay%20for%20cystic%20fibrosis%20transmembrane%20conductance%20regulator%20activity%20in%20vivo&rft.jtitle=Experimental%20physiology&rft.au=Shamsuddin,%20A.%20K.%20M.&rft.date=2008-08&rft.volume=93&rft.issue=8&rft.spage=969&rft.epage=981&rft.pages=969-981&rft.issn=0958-0670&rft.eissn=1469-445X&rft_id=info:doi/10.1113/expphysiol.2008.042283&rft_dat=%3Cproquest_cross%3E1891873099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891873099&rft_id=info:pmid/18441335&rfr_iscdi=true