Axonal accumulation of hyperpolarization-activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat
Peripheral nerve injury causes neuropathic pain including mechanical allodynia and thermal hyperalgesia due to central and peripheral sensitization. Spontaneous ectopic discharges derived from dorsal root ganglion (DRG) neurons and from the sites of injury are a key factor in the initiation of this...
Gespeichert in:
Veröffentlicht in: | Pain (Amsterdam) 2008-07, Vol.137 (3), p.495-506 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 506 |
---|---|
container_issue | 3 |
container_start_page | 495 |
container_title | Pain (Amsterdam) |
container_volume | 137 |
creator | Jiang, Yu-Qiu Xing, Guo-Gang Wang, Sheng-Lan Tu, Hui-Yin Chi, Ye-Nan Li, Jie Liu, Feng-Yu Han, Ji-Sheng Wan, You |
description | Peripheral nerve injury causes neuropathic pain including mechanical allodynia and thermal hyperalgesia due to central and peripheral sensitization. Spontaneous ectopic discharges derived from dorsal root ganglion (DRG) neurons and from the sites of injury are a key factor in the initiation of this sensitization. Numerous studies have focused primarily on DRG neurons; however, the injured axons themselves likely play an equally important role. Previous studies of neuropathic pain rats with spinal nerve ligation (SNL) showed that the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel in DRG neuronal bodies is important for the development of neuropathic pain. Here, we investigate the role of the axonal HCN channel in neuropathic pain rats. Using the chronic constriction injury (CCI) model, we found abundant axonal accumulation of HCN channel protein at the injured sites accompanied by a slight decrease in DRG neuronal bodies. The function of these accumulated channels was verified by local application of ZD7288, a specific HCN blocker, which significantly suppressed the ectopic discharges from injured nerve fibers with no effect on impulse conduction. Moreover, mechanical allodynia, but not thermal hyperalgesia, was relieved significantly by ZD7288. These results suggest that axonal HCN channel accumulation plays an important role in ectopic discharges from injured spinal nerves and contributes to the development of mechanical allodynia in neuropathic pain rats. |
doi_str_mv | 10.1016/j.pain.2007.10.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69328462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304395907005787</els_id><sourcerecordid>69328462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4298-5b8b3686bb1db62200cd5aacd1a8b278addb006cf030c3d3215e9e9ca9abdef83</originalsourceid><addsrcrecordid>eNp9UU2P0zAUjBCI7Rb-AAfkC9xS_NE6jsRltYIFaSUucI5e7Bfq4trBdrqUv8MfxSEV3Dg9ad7MPHumql4wumGUyTeHzQjWbzilTQE2lLFH1YqphtdScvG4WlFBt7Vod-1VdZ3SgVLKOW-fVldMsaZVjVhVv25-BA-OgNbTcXKQbfAkDGR_HjGOwUG0P_-ANehsT5DREH3WzmriJ-0wZGuw_rrgi1rvwXt0iejgc7T9lDGRHMgR543V8zXngjl7CwSGjJGUW3bcYywrj_GExPrDFM9lkAj5WfVkAJfw-WWuqy_v332-_VDff7r7eHtzX-stb1W961UvpJJ9z0wveYlFmx2ANgxUzxsFxvSUSj2UWLQwgrMdtthqaKE3OCixrl4vvmMM3ydMuTvapNE58Bim1MlWcLUt0a4rvhB1DClFHLox2iPEc8doN1fTHbq5mm6uZsZKNUX08uI-9Uc0_ySXLgrh1YUAqYQ0RPDapr88Tndb2TSz0XbhPQRXwkvf3PSAsdsjuLzvSslUilbW5baijWC0nqH5d28XWakGT7YokrboNRobUefOBPu_5_8GVBbCcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69328462</pqid></control><display><type>article</type><title>Axonal accumulation of hyperpolarization-activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Jiang, Yu-Qiu ; Xing, Guo-Gang ; Wang, Sheng-Lan ; Tu, Hui-Yin ; Chi, Ye-Nan ; Li, Jie ; Liu, Feng-Yu ; Han, Ji-Sheng ; Wan, You</creator><creatorcontrib>Jiang, Yu-Qiu ; Xing, Guo-Gang ; Wang, Sheng-Lan ; Tu, Hui-Yin ; Chi, Ye-Nan ; Li, Jie ; Liu, Feng-Yu ; Han, Ji-Sheng ; Wan, You</creatorcontrib><description>Peripheral nerve injury causes neuropathic pain including mechanical allodynia and thermal hyperalgesia due to central and peripheral sensitization. Spontaneous ectopic discharges derived from dorsal root ganglion (DRG) neurons and from the sites of injury are a key factor in the initiation of this sensitization. Numerous studies have focused primarily on DRG neurons; however, the injured axons themselves likely play an equally important role. Previous studies of neuropathic pain rats with spinal nerve ligation (SNL) showed that the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel in DRG neuronal bodies is important for the development of neuropathic pain. Here, we investigate the role of the axonal HCN channel in neuropathic pain rats. Using the chronic constriction injury (CCI) model, we found abundant axonal accumulation of HCN channel protein at the injured sites accompanied by a slight decrease in DRG neuronal bodies. The function of these accumulated channels was verified by local application of ZD7288, a specific HCN blocker, which significantly suppressed the ectopic discharges from injured nerve fibers with no effect on impulse conduction. Moreover, mechanical allodynia, but not thermal hyperalgesia, was relieved significantly by ZD7288. These results suggest that axonal HCN channel accumulation plays an important role in ectopic discharges from injured spinal nerves and contributes to the development of mechanical allodynia in neuropathic pain rats.</description><identifier>ISSN: 0304-3959</identifier><identifier>EISSN: 1872-6623</identifier><identifier>DOI: 10.1016/j.pain.2007.10.011</identifier><identifier>PMID: 18179873</identifier><identifier>CODEN: PAINDB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animals ; Axons - metabolism ; Biological and medical sciences ; Chronic constriction injury (CCI) ; Cranial nerves. Spinal roots. Peripheral nerves. Autonomic nervous system. Gustation. Olfaction ; Cyclic Nucleotide-Gated Cation Channels - metabolism ; Ectopic discharge ; Ganglia, Spinal - physiopathology ; Hyperalgesia - physiopathology ; Hyperpolarization-activated cyclic nucleotide-gated cation channel ; Ion Channel Gating ; Male ; Medical sciences ; Membrane Potentials ; Nervous system (semeiology, syndromes) ; Nervous system as a whole ; Neurology ; Neuropathic pain ; Peripheral Nerve Injuries ; Peripheral Nerves - physiopathology ; Posterior Horn Cells - metabolism ; Rats ; Rats, Sprague-Dawley ; Touch</subject><ispartof>Pain (Amsterdam), 2008-07, Vol.137 (3), p.495-506</ispartof><rights>2007 International Association for the Study of Pain</rights><rights>Lippincott Williams & Wilkins, Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4298-5b8b3686bb1db62200cd5aacd1a8b278addb006cf030c3d3215e9e9ca9abdef83</citedby><cites>FETCH-LOGICAL-c4298-5b8b3686bb1db62200cd5aacd1a8b278addb006cf030c3d3215e9e9ca9abdef83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20546771$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18179873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Yu-Qiu</creatorcontrib><creatorcontrib>Xing, Guo-Gang</creatorcontrib><creatorcontrib>Wang, Sheng-Lan</creatorcontrib><creatorcontrib>Tu, Hui-Yin</creatorcontrib><creatorcontrib>Chi, Ye-Nan</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Liu, Feng-Yu</creatorcontrib><creatorcontrib>Han, Ji-Sheng</creatorcontrib><creatorcontrib>Wan, You</creatorcontrib><title>Axonal accumulation of hyperpolarization-activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat</title><title>Pain (Amsterdam)</title><addtitle>Pain</addtitle><description>Peripheral nerve injury causes neuropathic pain including mechanical allodynia and thermal hyperalgesia due to central and peripheral sensitization. Spontaneous ectopic discharges derived from dorsal root ganglion (DRG) neurons and from the sites of injury are a key factor in the initiation of this sensitization. Numerous studies have focused primarily on DRG neurons; however, the injured axons themselves likely play an equally important role. Previous studies of neuropathic pain rats with spinal nerve ligation (SNL) showed that the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel in DRG neuronal bodies is important for the development of neuropathic pain. Here, we investigate the role of the axonal HCN channel in neuropathic pain rats. Using the chronic constriction injury (CCI) model, we found abundant axonal accumulation of HCN channel protein at the injured sites accompanied by a slight decrease in DRG neuronal bodies. The function of these accumulated channels was verified by local application of ZD7288, a specific HCN blocker, which significantly suppressed the ectopic discharges from injured nerve fibers with no effect on impulse conduction. Moreover, mechanical allodynia, but not thermal hyperalgesia, was relieved significantly by ZD7288. These results suggest that axonal HCN channel accumulation plays an important role in ectopic discharges from injured spinal nerves and contributes to the development of mechanical allodynia in neuropathic pain rats.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Biological and medical sciences</subject><subject>Chronic constriction injury (CCI)</subject><subject>Cranial nerves. Spinal roots. Peripheral nerves. Autonomic nervous system. Gustation. Olfaction</subject><subject>Cyclic Nucleotide-Gated Cation Channels - metabolism</subject><subject>Ectopic discharge</subject><subject>Ganglia, Spinal - physiopathology</subject><subject>Hyperalgesia - physiopathology</subject><subject>Hyperpolarization-activated cyclic nucleotide-gated cation channel</subject><subject>Ion Channel Gating</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Membrane Potentials</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Nervous system as a whole</subject><subject>Neurology</subject><subject>Neuropathic pain</subject><subject>Peripheral Nerve Injuries</subject><subject>Peripheral Nerves - physiopathology</subject><subject>Posterior Horn Cells - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Touch</subject><issn>0304-3959</issn><issn>1872-6623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2P0zAUjBCI7Rb-AAfkC9xS_NE6jsRltYIFaSUucI5e7Bfq4trBdrqUv8MfxSEV3Dg9ad7MPHumql4wumGUyTeHzQjWbzilTQE2lLFH1YqphtdScvG4WlFBt7Vod-1VdZ3SgVLKOW-fVldMsaZVjVhVv25-BA-OgNbTcXKQbfAkDGR_HjGOwUG0P_-ANehsT5DREH3WzmriJ-0wZGuw_rrgi1rvwXt0iejgc7T9lDGRHMgR543V8zXngjl7CwSGjJGUW3bcYywrj_GExPrDFM9lkAj5WfVkAJfw-WWuqy_v332-_VDff7r7eHtzX-stb1W961UvpJJ9z0wveYlFmx2ANgxUzxsFxvSUSj2UWLQwgrMdtthqaKE3OCixrl4vvmMM3ydMuTvapNE58Bim1MlWcLUt0a4rvhB1DClFHLox2iPEc8doN1fTHbq5mm6uZsZKNUX08uI-9Uc0_ySXLgrh1YUAqYQ0RPDapr88Tndb2TSz0XbhPQRXwkvf3PSAsdsjuLzvSslUilbW5baijWC0nqH5d28XWakGT7YokrboNRobUefOBPu_5_8GVBbCcw</recordid><startdate>20080731</startdate><enddate>20080731</enddate><creator>Jiang, Yu-Qiu</creator><creator>Xing, Guo-Gang</creator><creator>Wang, Sheng-Lan</creator><creator>Tu, Hui-Yin</creator><creator>Chi, Ye-Nan</creator><creator>Li, Jie</creator><creator>Liu, Feng-Yu</creator><creator>Han, Ji-Sheng</creator><creator>Wan, You</creator><general>Elsevier B.V</general><general>Lippincott Williams & Wilkins, Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080731</creationdate><title>Axonal accumulation of hyperpolarization-activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat</title><author>Jiang, Yu-Qiu ; Xing, Guo-Gang ; Wang, Sheng-Lan ; Tu, Hui-Yin ; Chi, Ye-Nan ; Li, Jie ; Liu, Feng-Yu ; Han, Ji-Sheng ; Wan, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4298-5b8b3686bb1db62200cd5aacd1a8b278addb006cf030c3d3215e9e9ca9abdef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Biological and medical sciences</topic><topic>Chronic constriction injury (CCI)</topic><topic>Cranial nerves. Spinal roots. Peripheral nerves. Autonomic nervous system. Gustation. Olfaction</topic><topic>Cyclic Nucleotide-Gated Cation Channels - metabolism</topic><topic>Ectopic discharge</topic><topic>Ganglia, Spinal - physiopathology</topic><topic>Hyperalgesia - physiopathology</topic><topic>Hyperpolarization-activated cyclic nucleotide-gated cation channel</topic><topic>Ion Channel Gating</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Membrane Potentials</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Nervous system as a whole</topic><topic>Neurology</topic><topic>Neuropathic pain</topic><topic>Peripheral Nerve Injuries</topic><topic>Peripheral Nerves - physiopathology</topic><topic>Posterior Horn Cells - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Touch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yu-Qiu</creatorcontrib><creatorcontrib>Xing, Guo-Gang</creatorcontrib><creatorcontrib>Wang, Sheng-Lan</creatorcontrib><creatorcontrib>Tu, Hui-Yin</creatorcontrib><creatorcontrib>Chi, Ye-Nan</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Liu, Feng-Yu</creatorcontrib><creatorcontrib>Han, Ji-Sheng</creatorcontrib><creatorcontrib>Wan, You</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Pain (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Yu-Qiu</au><au>Xing, Guo-Gang</au><au>Wang, Sheng-Lan</au><au>Tu, Hui-Yin</au><au>Chi, Ye-Nan</au><au>Li, Jie</au><au>Liu, Feng-Yu</au><au>Han, Ji-Sheng</au><au>Wan, You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axonal accumulation of hyperpolarization-activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat</atitle><jtitle>Pain (Amsterdam)</jtitle><addtitle>Pain</addtitle><date>2008-07-31</date><risdate>2008</risdate><volume>137</volume><issue>3</issue><spage>495</spage><epage>506</epage><pages>495-506</pages><issn>0304-3959</issn><eissn>1872-6623</eissn><coden>PAINDB</coden><abstract>Peripheral nerve injury causes neuropathic pain including mechanical allodynia and thermal hyperalgesia due to central and peripheral sensitization. Spontaneous ectopic discharges derived from dorsal root ganglion (DRG) neurons and from the sites of injury are a key factor in the initiation of this sensitization. Numerous studies have focused primarily on DRG neurons; however, the injured axons themselves likely play an equally important role. Previous studies of neuropathic pain rats with spinal nerve ligation (SNL) showed that the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel in DRG neuronal bodies is important for the development of neuropathic pain. Here, we investigate the role of the axonal HCN channel in neuropathic pain rats. Using the chronic constriction injury (CCI) model, we found abundant axonal accumulation of HCN channel protein at the injured sites accompanied by a slight decrease in DRG neuronal bodies. The function of these accumulated channels was verified by local application of ZD7288, a specific HCN blocker, which significantly suppressed the ectopic discharges from injured nerve fibers with no effect on impulse conduction. Moreover, mechanical allodynia, but not thermal hyperalgesia, was relieved significantly by ZD7288. These results suggest that axonal HCN channel accumulation plays an important role in ectopic discharges from injured spinal nerves and contributes to the development of mechanical allodynia in neuropathic pain rats.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>18179873</pmid><doi>10.1016/j.pain.2007.10.011</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3959 |
ispartof | Pain (Amsterdam), 2008-07, Vol.137 (3), p.495-506 |
issn | 0304-3959 1872-6623 |
language | eng |
recordid | cdi_proquest_miscellaneous_69328462 |
source | MEDLINE; Journals@Ovid Complete |
subjects | Animals Axons - metabolism Biological and medical sciences Chronic constriction injury (CCI) Cranial nerves. Spinal roots. Peripheral nerves. Autonomic nervous system. Gustation. Olfaction Cyclic Nucleotide-Gated Cation Channels - metabolism Ectopic discharge Ganglia, Spinal - physiopathology Hyperalgesia - physiopathology Hyperpolarization-activated cyclic nucleotide-gated cation channel Ion Channel Gating Male Medical sciences Membrane Potentials Nervous system (semeiology, syndromes) Nervous system as a whole Neurology Neuropathic pain Peripheral Nerve Injuries Peripheral Nerves - physiopathology Posterior Horn Cells - metabolism Rats Rats, Sprague-Dawley Touch |
title | Axonal accumulation of hyperpolarization-activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axonal%20accumulation%20of%20hyperpolarization-activated%20cyclic%20nucleotide-gated%20cation%20channels%20contributes%20to%20mechanical%20allodynia%20after%20peripheral%20nerve%20injury%20in%20rat&rft.jtitle=Pain%20(Amsterdam)&rft.au=Jiang,%20Yu-Qiu&rft.date=2008-07-31&rft.volume=137&rft.issue=3&rft.spage=495&rft.epage=506&rft.pages=495-506&rft.issn=0304-3959&rft.eissn=1872-6623&rft.coden=PAINDB&rft_id=info:doi/10.1016/j.pain.2007.10.011&rft_dat=%3Cproquest_cross%3E69328462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69328462&rft_id=info:pmid/18179873&rft_els_id=S0304395907005787&rfr_iscdi=true |