Application of motion analysis system in pre-impact fall detection

Abstract The purpose of this study is to investigate unique features of body segments in fall and activities of daily living (ADL) to make automatic detection of fall in its descending phase before the impact. Thus, fall-related injuries can be prevented or reduced by deploying feedback systems befo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2008-07, Vol.41 (10), p.2297-2304
Hauptverfasser: Nyan, M.N, Tay, Francis E.H, Mah, Matthew Z.E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The purpose of this study is to investigate unique features of body segments in fall and activities of daily living (ADL) to make automatic detection of fall in its descending phase before the impact. Thus, fall-related injuries can be prevented or reduced by deploying feedback systems before the impact. In this study, the authors propose the following hypothesis: (1) thigh segment normally does not go beyond certain threshold angle to forward and sideways directions in ADL and (2) even if it does, the angular characteristics measured at torso and thigh differ from one another in ADL whereas in the case of fall, they become congruent. These two factors can be used to distinguish fall from ADL in its inception. Vicon 3-D motion analysis system was used in this study. High level of correlation between thigh and torso segments (corr > 0.99) was found for fall activities and low correlation coefficients (mean corr for lateral movements is 0.2338 and for sagittal movements is −0.665) were observed in ADL. By applying the hypothesis, all simulated falls could be detected with no false alarms and around 700 ms lead-time before the impact was achieved in pre-impact fall detection. It is the longest lead-time obtained so far in pre-impact fall detection.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2008.03.042