Capture of Phosphopeptides Using α-Zirconium Phosphate Nanoplatelets

α-Zirconium phosphate nanoplatelets (α-ZrPN) were studied as a binding agent for phosphopeptides. Nanoplatelets of α-zirconium phosphate were incubated overnight with zirconium oxychloride, followed by centrifugation, and washed twice with water followed by an aqueous solution of 80% acetonitrile to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2008-07, Vol.80 (14), p.5542-5549
Hauptverfasser: Xu, Songyun, Whitin, John C, Yu, Tom To-Sang, Zhou, Houjiang, Sun, Dazhi, Sue, Hung-Jue, Zou, Hanfa, Cohen, Harvey J, Zare, Richard N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5549
container_issue 14
container_start_page 5542
container_title Analytical chemistry (Washington)
container_volume 80
creator Xu, Songyun
Whitin, John C
Yu, Tom To-Sang
Zhou, Houjiang
Sun, Dazhi
Sue, Hung-Jue
Zou, Hanfa
Cohen, Harvey J
Zare, Richard N
description α-Zirconium phosphate nanoplatelets (α-ZrPN) were studied as a binding agent for phosphopeptides. Nanoplatelets of α-zirconium phosphate were incubated overnight with zirconium oxychloride, followed by centrifugation, and washed twice with water followed by an aqueous solution of 80% acetonitrile to form the binding agent. α-ZrPN were able specifically to capture phosphoserine-containing peptides from a tryptic digest of a complex peptide mixture in which its abundance was only 0.05%. α-ZrPN also bound peptides containing phosphothreonine and phosphotyrosine. The limit of detection for phosphopeptides is ∼2 fmol, based on using matrix-assisted laser desorption/ionization mass spectrometry. α-ZrPN were applied for the analysis of tryptic digests of mouse liver and leukemia cell phosphoproteomes and succeeded in identifying 158 phosphopeptides (209 phosphorylation sites) from 101 phosphoproteins in mouse liver lysate and 78 phosphopeptides (104 phosphorylation sites) from 59 phosphoproteins in leukemia cell extract. For these two tryptic digests, the α-ZrPN approach is able to capture more phosphopeptides than that obtained from TiO2 particles or from Fe3+-IMAC beads, but each method is able to bind some phosphopeptides that the others do not.
doi_str_mv 10.1021/ac800577z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69312445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69312445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-c0dde95ee4d1a3751256e2e2b085f8efb79f58807763ba22b7ee5cf49c804b633</originalsourceid><addsrcrecordid>eNpt0MtKxDAUBuAgio6XhS8g3Si4qJ4kTZMuZfAGogMqiJuQpqda7TQ1aUF9K1_EZ7IyZdy4OoHz8ZPzE7JL4YgCo8fGKgAh5ecKmVDBIE6VYqtkAgA8ZhJgg2yG8AJAKdB0nWxQJRhLeDohp1PTdr3HyJXR7NmF9tm12HZVgSG6D1XzFH1_xY-Vt66p-vlITIfRtWlcWw-vGruwTdZKUwfcGecWuT87vZtexFc355fTk6vYcEW72EJRYCYQk4IaLgVlIkWGLAclSoVlLrNSKAVSpjw3jOUSUdgyyYb7kjzlfIscLHJb7956DJ2eV8FiXZsGXR90mnHKkkQM8HABrXcheCx166u58R-agv7tTC87G-zeGNrncyz-5FjSAPZHYII1delNY6uwdAySTDHOBhcvXBU6fF_ujX_VqRzO1XezW80fHmcPcEb1-V-usUG_uN43Q3f_fPAHa1yPrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69312445</pqid></control><display><type>article</type><title>Capture of Phosphopeptides Using α-Zirconium Phosphate Nanoplatelets</title><source>MEDLINE</source><source>ACS Publications</source><creator>Xu, Songyun ; Whitin, John C ; Yu, Tom To-Sang ; Zhou, Houjiang ; Sun, Dazhi ; Sue, Hung-Jue ; Zou, Hanfa ; Cohen, Harvey J ; Zare, Richard N</creator><creatorcontrib>Xu, Songyun ; Whitin, John C ; Yu, Tom To-Sang ; Zhou, Houjiang ; Sun, Dazhi ; Sue, Hung-Jue ; Zou, Hanfa ; Cohen, Harvey J ; Zare, Richard N</creatorcontrib><description>α-Zirconium phosphate nanoplatelets (α-ZrPN) were studied as a binding agent for phosphopeptides. Nanoplatelets of α-zirconium phosphate were incubated overnight with zirconium oxychloride, followed by centrifugation, and washed twice with water followed by an aqueous solution of 80% acetonitrile to form the binding agent. α-ZrPN were able specifically to capture phosphoserine-containing peptides from a tryptic digest of a complex peptide mixture in which its abundance was only 0.05%. α-ZrPN also bound peptides containing phosphothreonine and phosphotyrosine. The limit of detection for phosphopeptides is ∼2 fmol, based on using matrix-assisted laser desorption/ionization mass spectrometry. α-ZrPN were applied for the analysis of tryptic digests of mouse liver and leukemia cell phosphoproteomes and succeeded in identifying 158 phosphopeptides (209 phosphorylation sites) from 101 phosphoproteins in mouse liver lysate and 78 phosphopeptides (104 phosphorylation sites) from 59 phosphoproteins in leukemia cell extract. For these two tryptic digests, the α-ZrPN approach is able to capture more phosphopeptides than that obtained from TiO2 particles or from Fe3+-IMAC beads, but each method is able to bind some phosphopeptides that the others do not.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac800577z</identifier><identifier>PMID: 18522436</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical biochemistry: general aspects, technics, instrumentation ; Analytical chemistry ; Analytical, structural and metabolic biochemistry ; Animals ; Biological and medical sciences ; Cell Line, Tumor ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Humans ; Liver - metabolism ; Mice ; Microscopy, Electron, Scanning ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Other chromatographic methods ; Phosphopeptides - analysis ; Phosphopeptides - metabolism ; Spectrometric and optical methods ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Zirconium - analysis</subject><ispartof>Analytical chemistry (Washington), 2008-07, Vol.80 (14), p.5542-5549</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-c0dde95ee4d1a3751256e2e2b085f8efb79f58807763ba22b7ee5cf49c804b633</citedby><cites>FETCH-LOGICAL-a381t-c0dde95ee4d1a3751256e2e2b085f8efb79f58807763ba22b7ee5cf49c804b633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac800577z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac800577z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20498232$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18522436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Songyun</creatorcontrib><creatorcontrib>Whitin, John C</creatorcontrib><creatorcontrib>Yu, Tom To-Sang</creatorcontrib><creatorcontrib>Zhou, Houjiang</creatorcontrib><creatorcontrib>Sun, Dazhi</creatorcontrib><creatorcontrib>Sue, Hung-Jue</creatorcontrib><creatorcontrib>Zou, Hanfa</creatorcontrib><creatorcontrib>Cohen, Harvey J</creatorcontrib><creatorcontrib>Zare, Richard N</creatorcontrib><title>Capture of Phosphopeptides Using α-Zirconium Phosphate Nanoplatelets</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>α-Zirconium phosphate nanoplatelets (α-ZrPN) were studied as a binding agent for phosphopeptides. Nanoplatelets of α-zirconium phosphate were incubated overnight with zirconium oxychloride, followed by centrifugation, and washed twice with water followed by an aqueous solution of 80% acetonitrile to form the binding agent. α-ZrPN were able specifically to capture phosphoserine-containing peptides from a tryptic digest of a complex peptide mixture in which its abundance was only 0.05%. α-ZrPN also bound peptides containing phosphothreonine and phosphotyrosine. The limit of detection for phosphopeptides is ∼2 fmol, based on using matrix-assisted laser desorption/ionization mass spectrometry. α-ZrPN were applied for the analysis of tryptic digests of mouse liver and leukemia cell phosphoproteomes and succeeded in identifying 158 phosphopeptides (209 phosphorylation sites) from 101 phosphoproteins in mouse liver lysate and 78 phosphopeptides (104 phosphorylation sites) from 59 phosphoproteins in leukemia cell extract. For these two tryptic digests, the α-ZrPN approach is able to capture more phosphopeptides than that obtained from TiO2 particles or from Fe3+-IMAC beads, but each method is able to bind some phosphopeptides that the others do not.</description><subject>Analytical biochemistry: general aspects, technics, instrumentation</subject><subject>Analytical chemistry</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Tumor</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Liver - metabolism</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Other chromatographic methods</subject><subject>Phosphopeptides - analysis</subject><subject>Phosphopeptides - metabolism</subject><subject>Spectrometric and optical methods</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Zirconium - analysis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MtKxDAUBuAgio6XhS8g3Si4qJ4kTZMuZfAGogMqiJuQpqda7TQ1aUF9K1_EZ7IyZdy4OoHz8ZPzE7JL4YgCo8fGKgAh5ecKmVDBIE6VYqtkAgA8ZhJgg2yG8AJAKdB0nWxQJRhLeDohp1PTdr3HyJXR7NmF9tm12HZVgSG6D1XzFH1_xY-Vt66p-vlITIfRtWlcWw-vGruwTdZKUwfcGecWuT87vZtexFc355fTk6vYcEW72EJRYCYQk4IaLgVlIkWGLAclSoVlLrNSKAVSpjw3jOUSUdgyyYb7kjzlfIscLHJb7956DJ2eV8FiXZsGXR90mnHKkkQM8HABrXcheCx166u58R-agv7tTC87G-zeGNrncyz-5FjSAPZHYII1delNY6uwdAySTDHOBhcvXBU6fF_ujX_VqRzO1XezW80fHmcPcEb1-V-usUG_uN43Q3f_fPAHa1yPrw</recordid><startdate>20080715</startdate><enddate>20080715</enddate><creator>Xu, Songyun</creator><creator>Whitin, John C</creator><creator>Yu, Tom To-Sang</creator><creator>Zhou, Houjiang</creator><creator>Sun, Dazhi</creator><creator>Sue, Hung-Jue</creator><creator>Zou, Hanfa</creator><creator>Cohen, Harvey J</creator><creator>Zare, Richard N</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080715</creationdate><title>Capture of Phosphopeptides Using α-Zirconium Phosphate Nanoplatelets</title><author>Xu, Songyun ; Whitin, John C ; Yu, Tom To-Sang ; Zhou, Houjiang ; Sun, Dazhi ; Sue, Hung-Jue ; Zou, Hanfa ; Cohen, Harvey J ; Zare, Richard N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-c0dde95ee4d1a3751256e2e2b085f8efb79f58807763ba22b7ee5cf49c804b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical biochemistry: general aspects, technics, instrumentation</topic><topic>Analytical chemistry</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Tumor</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Liver - metabolism</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Other chromatographic methods</topic><topic>Phosphopeptides - analysis</topic><topic>Phosphopeptides - metabolism</topic><topic>Spectrometric and optical methods</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Zirconium - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Songyun</creatorcontrib><creatorcontrib>Whitin, John C</creatorcontrib><creatorcontrib>Yu, Tom To-Sang</creatorcontrib><creatorcontrib>Zhou, Houjiang</creatorcontrib><creatorcontrib>Sun, Dazhi</creatorcontrib><creatorcontrib>Sue, Hung-Jue</creatorcontrib><creatorcontrib>Zou, Hanfa</creatorcontrib><creatorcontrib>Cohen, Harvey J</creatorcontrib><creatorcontrib>Zare, Richard N</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Songyun</au><au>Whitin, John C</au><au>Yu, Tom To-Sang</au><au>Zhou, Houjiang</au><au>Sun, Dazhi</au><au>Sue, Hung-Jue</au><au>Zou, Hanfa</au><au>Cohen, Harvey J</au><au>Zare, Richard N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capture of Phosphopeptides Using α-Zirconium Phosphate Nanoplatelets</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-07-15</date><risdate>2008</risdate><volume>80</volume><issue>14</issue><spage>5542</spage><epage>5549</epage><pages>5542-5549</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>α-Zirconium phosphate nanoplatelets (α-ZrPN) were studied as a binding agent for phosphopeptides. Nanoplatelets of α-zirconium phosphate were incubated overnight with zirconium oxychloride, followed by centrifugation, and washed twice with water followed by an aqueous solution of 80% acetonitrile to form the binding agent. α-ZrPN were able specifically to capture phosphoserine-containing peptides from a tryptic digest of a complex peptide mixture in which its abundance was only 0.05%. α-ZrPN also bound peptides containing phosphothreonine and phosphotyrosine. The limit of detection for phosphopeptides is ∼2 fmol, based on using matrix-assisted laser desorption/ionization mass spectrometry. α-ZrPN were applied for the analysis of tryptic digests of mouse liver and leukemia cell phosphoproteomes and succeeded in identifying 158 phosphopeptides (209 phosphorylation sites) from 101 phosphoproteins in mouse liver lysate and 78 phosphopeptides (104 phosphorylation sites) from 59 phosphoproteins in leukemia cell extract. For these two tryptic digests, the α-ZrPN approach is able to capture more phosphopeptides than that obtained from TiO2 particles or from Fe3+-IMAC beads, but each method is able to bind some phosphopeptides that the others do not.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18522436</pmid><doi>10.1021/ac800577z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2008-07, Vol.80 (14), p.5542-5549
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_69312445
source MEDLINE; ACS Publications
subjects Analytical biochemistry: general aspects, technics, instrumentation
Analytical chemistry
Analytical, structural and metabolic biochemistry
Animals
Biological and medical sciences
Cell Line, Tumor
Chemistry
Chromatographic methods and physical methods associated with chromatography
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Humans
Liver - metabolism
Mice
Microscopy, Electron, Scanning
Nanostructures - chemistry
Nanostructures - ultrastructure
Other chromatographic methods
Phosphopeptides - analysis
Phosphopeptides - metabolism
Spectrometric and optical methods
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Zirconium - analysis
title Capture of Phosphopeptides Using α-Zirconium Phosphate Nanoplatelets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capture%20of%20Phosphopeptides%20Using%20%CE%B1-Zirconium%20Phosphate%20Nanoplatelets&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Xu,%20Songyun&rft.date=2008-07-15&rft.volume=80&rft.issue=14&rft.spage=5542&rft.epage=5549&rft.pages=5542-5549&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac800577z&rft_dat=%3Cproquest_cross%3E69312445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69312445&rft_id=info:pmid/18522436&rfr_iscdi=true