Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia

Osteoclasts are multinucleated haematopoietic cells that resorb bone. Increased osteoclast activity causes osteoporosis, a disorder resulting in a low bone mass and a high risk of fractures. Increased osteoclast size and numbers are also a hallmark of other disorders, such as Paget's disease an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2008-07, Vol.454 (7201), p.221-225
Hauptverfasser: Amling, Michael, Wagner, Erwin F, Priemel, Matthias, Komnenovic, Vukoslav, Scheuch, Harald, Bakiri, Latifa, Schilling, Arndt F, Hoebertz, Astrid, Eferl, Robert, Bozec, Aline, Stewart, Colin L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 7201
container_start_page 221
container_title Nature
container_volume 454
creator Amling, Michael
Wagner, Erwin F
Priemel, Matthias
Komnenovic, Vukoslav
Scheuch, Harald
Bakiri, Latifa
Schilling, Arndt F
Hoebertz, Astrid
Eferl, Robert
Bozec, Aline
Stewart, Colin L
description Osteoclasts are multinucleated haematopoietic cells that resorb bone. Increased osteoclast activity causes osteoporosis, a disorder resulting in a low bone mass and a high risk of fractures. Increased osteoclast size and numbers are also a hallmark of other disorders, such as Paget's disease and multiple myeloma. The protein c-Fos, a component of the AP-1 transcription factor complex, is essential for osteoclast differentiation. Here we show that the Fos-related protein Fra-2 controls osteoclast survival and size. The bones of Fra-2-deficient newborn mice have giant osteoclasts, and signalling through leukaemia inhibitory factor (LIF) and its receptor is impaired. Similarly, newborn animals lacking LIF have giant osteoclasts, and we show that LIF is a direct transcriptional target of Fra-2 and c-Jun. Moreover, bones deficient in Fra-2 and LIF are hypoxic and express increased levels of hypoxia-induced factor 1 (HIF1 ) and Bcl-2. Overexpression of Bcl-2 is sufficient to induce giant osteoclasts in vivo, whereas Fra-2 and LIF affect HIF1 through transcriptional modulation of the HIF prolyl hydroxylase PHD2. This pathway is operative in the placenta, because specific inactivation of Fra-2 in the embryo alone does not cause hypoxia or the giant osteoclast phenotype. Thus placenta-induced hypoxia during embryogenesis leads to the formation of giant osteoclasts in young pups. These findings offer potential targets for the treatment of syndromes associated with increased osteoclastogenesis.
doi_str_mv 10.1038/nature07019
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69311841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632098155</galeid><sourcerecordid>A632098155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-a900e5166c87a3ba7a8243aa527add70de9e634e08527821b482005bafd6fe543</originalsourceid><addsrcrecordid>eNqF0vGL0zAUB_AiijdPf_J3qScKor1L2jTNfhzjpoPhgZ76Y3lLX7scWdJLWrj511_Gxt0mFSml8PrJN-TlRdFrSs4pycSFga53SApCx0-iEWUFTxgXxdNoREgqEiIyfhK98P6GEJLTgj2PTqjImSCEj6JfV75DKzX4LvbqD8bKx9KazlmtsYqXm3jmIEnjbuVs36zixXx2Ed7EocS2sy4sagxorUwTg6ni1aa1dwpeRs9q0B5f7b-n0c_Z5fX0a7K4-jKfThaJ5Ix0CYwJwZxyLkUB2RIKECnLAPK0gKoqSIVj5BlDIkJFpHTJRBoOsYS64jXmLDuNPuxyW2dve_RduVZeotZg0Pa-5OOMUsHof2FKQjxNSYBnf8Eb27twxK1heehusd323Q41oLFUpradA7lNLCc8S8lY0DwPKhlQDRp0oK3BWoXykT8b8LJVt-UhOh9A4alwreRg6sejBdvbxbuugd77cv7j-7H99G87uf49_TaopbPeO6zL1qk1uE1JSbkdzfJgNIN-s29sv1xj9Wj3sxjA-z0AL0HXDoxU_sGF7hc8oyK4zzvnwy_ToHu8oeF93-74rviQd2juAcIBAJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204547674</pqid></control><display><type>article</type><title>Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Amling, Michael ; Wagner, Erwin F ; Priemel, Matthias ; Komnenovic, Vukoslav ; Scheuch, Harald ; Bakiri, Latifa ; Schilling, Arndt F ; Hoebertz, Astrid ; Eferl, Robert ; Bozec, Aline ; Stewart, Colin L</creator><creatorcontrib>Amling, Michael ; Wagner, Erwin F ; Priemel, Matthias ; Komnenovic, Vukoslav ; Scheuch, Harald ; Bakiri, Latifa ; Schilling, Arndt F ; Hoebertz, Astrid ; Eferl, Robert ; Bozec, Aline ; Stewart, Colin L</creatorcontrib><description>Osteoclasts are multinucleated haematopoietic cells that resorb bone. Increased osteoclast activity causes osteoporosis, a disorder resulting in a low bone mass and a high risk of fractures. Increased osteoclast size and numbers are also a hallmark of other disorders, such as Paget's disease and multiple myeloma. The protein c-Fos, a component of the AP-1 transcription factor complex, is essential for osteoclast differentiation. Here we show that the Fos-related protein Fra-2 controls osteoclast survival and size. The bones of Fra-2-deficient newborn mice have giant osteoclasts, and signalling through leukaemia inhibitory factor (LIF) and its receptor is impaired. Similarly, newborn animals lacking LIF have giant osteoclasts, and we show that LIF is a direct transcriptional target of Fra-2 and c-Jun. Moreover, bones deficient in Fra-2 and LIF are hypoxic and express increased levels of hypoxia-induced factor 1 (HIF1 ) and Bcl-2. Overexpression of Bcl-2 is sufficient to induce giant osteoclasts in vivo, whereas Fra-2 and LIF affect HIF1 through transcriptional modulation of the HIF prolyl hydroxylase PHD2. This pathway is operative in the placenta, because specific inactivation of Fra-2 in the embryo alone does not cause hypoxia or the giant osteoclast phenotype. Thus placenta-induced hypoxia during embryogenesis leads to the formation of giant osteoclasts in young pups. These findings offer potential targets for the treatment of syndromes associated with increased osteoclastogenesis.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature07019</identifier><identifier>PMID: 18548006</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Animals, Newborn ; Apoptosis ; Binding sites ; Biological and medical sciences ; Bone and Bones - cytology ; Bone and Bones - metabolism ; Bone and Bones - pathology ; Bones ; Cell Size ; Cell Survival ; Density ; Disease ; DNA-Binding Proteins - metabolism ; Embryonic growth stage ; Female ; Fos-Related Antigen-2 - deficiency ; Fos-Related Antigen-2 - genetics ; Fos-Related Antigen-2 - metabolism ; General aspects ; Humanities and Social Sciences ; Hypoxia ; Hypoxia - metabolism ; Hypoxia - pathology ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-Inducible Factor-Proline Dioxygenases ; Immediate-Early Proteins - metabolism ; Inactivation ; letter ; Leukemia ; Leukemia Inhibitory Factor - deficiency ; Leukemia Inhibitory Factor - genetics ; Leukemia Inhibitory Factor - metabolism ; Leukemia Inhibitory Factor Receptor alpha Subunit - metabolism ; Male ; Medical sciences ; Mice ; multidisciplinary ; Multiple myeloma ; Osteoclasts - cytology ; Osteoclasts - metabolism ; Osteoclasts - pathology ; Osteoporosis ; Procollagen-Proline Dioxygenase ; Protein C ; Proteins ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-bcl-2 ; Rheumatoid arthritis ; Science ; Science (multidisciplinary) ; Signal Transduction</subject><ispartof>Nature, 2008-07, Vol.454 (7201), p.221-225</ispartof><rights>Macmillan Publishers Limited. All rights reserved 2008</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 10, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-a900e5166c87a3ba7a8243aa527add70de9e634e08527821b482005bafd6fe543</citedby><cites>FETCH-LOGICAL-c640t-a900e5166c87a3ba7a8243aa527add70de9e634e08527821b482005bafd6fe543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature07019$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature07019$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20476318$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18548006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amling, Michael</creatorcontrib><creatorcontrib>Wagner, Erwin F</creatorcontrib><creatorcontrib>Priemel, Matthias</creatorcontrib><creatorcontrib>Komnenovic, Vukoslav</creatorcontrib><creatorcontrib>Scheuch, Harald</creatorcontrib><creatorcontrib>Bakiri, Latifa</creatorcontrib><creatorcontrib>Schilling, Arndt F</creatorcontrib><creatorcontrib>Hoebertz, Astrid</creatorcontrib><creatorcontrib>Eferl, Robert</creatorcontrib><creatorcontrib>Bozec, Aline</creatorcontrib><creatorcontrib>Stewart, Colin L</creatorcontrib><title>Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Osteoclasts are multinucleated haematopoietic cells that resorb bone. Increased osteoclast activity causes osteoporosis, a disorder resulting in a low bone mass and a high risk of fractures. Increased osteoclast size and numbers are also a hallmark of other disorders, such as Paget's disease and multiple myeloma. The protein c-Fos, a component of the AP-1 transcription factor complex, is essential for osteoclast differentiation. Here we show that the Fos-related protein Fra-2 controls osteoclast survival and size. The bones of Fra-2-deficient newborn mice have giant osteoclasts, and signalling through leukaemia inhibitory factor (LIF) and its receptor is impaired. Similarly, newborn animals lacking LIF have giant osteoclasts, and we show that LIF is a direct transcriptional target of Fra-2 and c-Jun. Moreover, bones deficient in Fra-2 and LIF are hypoxic and express increased levels of hypoxia-induced factor 1 (HIF1 ) and Bcl-2. Overexpression of Bcl-2 is sufficient to induce giant osteoclasts in vivo, whereas Fra-2 and LIF affect HIF1 through transcriptional modulation of the HIF prolyl hydroxylase PHD2. This pathway is operative in the placenta, because specific inactivation of Fra-2 in the embryo alone does not cause hypoxia or the giant osteoclast phenotype. Thus placenta-induced hypoxia during embryogenesis leads to the formation of giant osteoclasts in young pups. These findings offer potential targets for the treatment of syndromes associated with increased osteoclastogenesis.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Biological and medical sciences</subject><subject>Bone and Bones - cytology</subject><subject>Bone and Bones - metabolism</subject><subject>Bone and Bones - pathology</subject><subject>Bones</subject><subject>Cell Size</subject><subject>Cell Survival</subject><subject>Density</subject><subject>Disease</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Embryonic growth stage</subject><subject>Female</subject><subject>Fos-Related Antigen-2 - deficiency</subject><subject>Fos-Related Antigen-2 - genetics</subject><subject>Fos-Related Antigen-2 - metabolism</subject><subject>General aspects</subject><subject>Humanities and Social Sciences</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Hypoxia - pathology</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-Inducible Factor-Proline Dioxygenases</subject><subject>Immediate-Early Proteins - metabolism</subject><subject>Inactivation</subject><subject>letter</subject><subject>Leukemia</subject><subject>Leukemia Inhibitory Factor - deficiency</subject><subject>Leukemia Inhibitory Factor - genetics</subject><subject>Leukemia Inhibitory Factor - metabolism</subject><subject>Leukemia Inhibitory Factor Receptor alpha Subunit - metabolism</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Multiple myeloma</subject><subject>Osteoclasts - cytology</subject><subject>Osteoclasts - metabolism</subject><subject>Osteoclasts - pathology</subject><subject>Osteoporosis</subject><subject>Procollagen-Proline Dioxygenase</subject><subject>Protein C</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-bcl-2</subject><subject>Rheumatoid arthritis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0vGL0zAUB_AiijdPf_J3qScKor1L2jTNfhzjpoPhgZ76Y3lLX7scWdJLWrj511_Gxt0mFSml8PrJN-TlRdFrSs4pycSFga53SApCx0-iEWUFTxgXxdNoREgqEiIyfhK98P6GEJLTgj2PTqjImSCEj6JfV75DKzX4LvbqD8bKx9KazlmtsYqXm3jmIEnjbuVs36zixXx2Ed7EocS2sy4sagxorUwTg6ni1aa1dwpeRs9q0B5f7b-n0c_Z5fX0a7K4-jKfThaJ5Ix0CYwJwZxyLkUB2RIKECnLAPK0gKoqSIVj5BlDIkJFpHTJRBoOsYS64jXmLDuNPuxyW2dve_RduVZeotZg0Pa-5OOMUsHof2FKQjxNSYBnf8Eb27twxK1heehusd323Q41oLFUpradA7lNLCc8S8lY0DwPKhlQDRp0oK3BWoXykT8b8LJVt-UhOh9A4alwreRg6sejBdvbxbuugd77cv7j-7H99G87uf49_TaopbPeO6zL1qk1uE1JSbkdzfJgNIN-s29sv1xj9Wj3sxjA-z0AL0HXDoxU_sGF7hc8oyK4zzvnwy_ToHu8oeF93-74rviQd2juAcIBAJs</recordid><startdate>20080710</startdate><enddate>20080710</enddate><creator>Amling, Michael</creator><creator>Wagner, Erwin F</creator><creator>Priemel, Matthias</creator><creator>Komnenovic, Vukoslav</creator><creator>Scheuch, Harald</creator><creator>Bakiri, Latifa</creator><creator>Schilling, Arndt F</creator><creator>Hoebertz, Astrid</creator><creator>Eferl, Robert</creator><creator>Bozec, Aline</creator><creator>Stewart, Colin L</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20080710</creationdate><title>Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia</title><author>Amling, Michael ; Wagner, Erwin F ; Priemel, Matthias ; Komnenovic, Vukoslav ; Scheuch, Harald ; Bakiri, Latifa ; Schilling, Arndt F ; Hoebertz, Astrid ; Eferl, Robert ; Bozec, Aline ; Stewart, Colin L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-a900e5166c87a3ba7a8243aa527add70de9e634e08527821b482005bafd6fe543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Biological and medical sciences</topic><topic>Bone and Bones - cytology</topic><topic>Bone and Bones - metabolism</topic><topic>Bone and Bones - pathology</topic><topic>Bones</topic><topic>Cell Size</topic><topic>Cell Survival</topic><topic>Density</topic><topic>Disease</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Embryonic growth stage</topic><topic>Female</topic><topic>Fos-Related Antigen-2 - deficiency</topic><topic>Fos-Related Antigen-2 - genetics</topic><topic>Fos-Related Antigen-2 - metabolism</topic><topic>General aspects</topic><topic>Humanities and Social Sciences</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Hypoxia - pathology</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-Inducible Factor-Proline Dioxygenases</topic><topic>Immediate-Early Proteins - metabolism</topic><topic>Inactivation</topic><topic>letter</topic><topic>Leukemia</topic><topic>Leukemia Inhibitory Factor - deficiency</topic><topic>Leukemia Inhibitory Factor - genetics</topic><topic>Leukemia Inhibitory Factor - metabolism</topic><topic>Leukemia Inhibitory Factor Receptor alpha Subunit - metabolism</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Multiple myeloma</topic><topic>Osteoclasts - cytology</topic><topic>Osteoclasts - metabolism</topic><topic>Osteoclasts - pathology</topic><topic>Osteoporosis</topic><topic>Procollagen-Proline Dioxygenase</topic><topic>Protein C</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-bcl-2</topic><topic>Rheumatoid arthritis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amling, Michael</creatorcontrib><creatorcontrib>Wagner, Erwin F</creatorcontrib><creatorcontrib>Priemel, Matthias</creatorcontrib><creatorcontrib>Komnenovic, Vukoslav</creatorcontrib><creatorcontrib>Scheuch, Harald</creatorcontrib><creatorcontrib>Bakiri, Latifa</creatorcontrib><creatorcontrib>Schilling, Arndt F</creatorcontrib><creatorcontrib>Hoebertz, Astrid</creatorcontrib><creatorcontrib>Eferl, Robert</creatorcontrib><creatorcontrib>Bozec, Aline</creatorcontrib><creatorcontrib>Stewart, Colin L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amling, Michael</au><au>Wagner, Erwin F</au><au>Priemel, Matthias</au><au>Komnenovic, Vukoslav</au><au>Scheuch, Harald</au><au>Bakiri, Latifa</au><au>Schilling, Arndt F</au><au>Hoebertz, Astrid</au><au>Eferl, Robert</au><au>Bozec, Aline</au><au>Stewart, Colin L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2008-07-10</date><risdate>2008</risdate><volume>454</volume><issue>7201</issue><spage>221</spage><epage>225</epage><pages>221-225</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>Osteoclasts are multinucleated haematopoietic cells that resorb bone. Increased osteoclast activity causes osteoporosis, a disorder resulting in a low bone mass and a high risk of fractures. Increased osteoclast size and numbers are also a hallmark of other disorders, such as Paget's disease and multiple myeloma. The protein c-Fos, a component of the AP-1 transcription factor complex, is essential for osteoclast differentiation. Here we show that the Fos-related protein Fra-2 controls osteoclast survival and size. The bones of Fra-2-deficient newborn mice have giant osteoclasts, and signalling through leukaemia inhibitory factor (LIF) and its receptor is impaired. Similarly, newborn animals lacking LIF have giant osteoclasts, and we show that LIF is a direct transcriptional target of Fra-2 and c-Jun. Moreover, bones deficient in Fra-2 and LIF are hypoxic and express increased levels of hypoxia-induced factor 1 (HIF1 ) and Bcl-2. Overexpression of Bcl-2 is sufficient to induce giant osteoclasts in vivo, whereas Fra-2 and LIF affect HIF1 through transcriptional modulation of the HIF prolyl hydroxylase PHD2. This pathway is operative in the placenta, because specific inactivation of Fra-2 in the embryo alone does not cause hypoxia or the giant osteoclast phenotype. Thus placenta-induced hypoxia during embryogenesis leads to the formation of giant osteoclasts in young pups. These findings offer potential targets for the treatment of syndromes associated with increased osteoclastogenesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18548006</pmid><doi>10.1038/nature07019</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature, 2008-07, Vol.454 (7201), p.221-225
issn 0028-0836
1476-4687
1476-4679
language eng
recordid cdi_proquest_miscellaneous_69311841
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects Animals
Animals, Newborn
Apoptosis
Binding sites
Biological and medical sciences
Bone and Bones - cytology
Bone and Bones - metabolism
Bone and Bones - pathology
Bones
Cell Size
Cell Survival
Density
Disease
DNA-Binding Proteins - metabolism
Embryonic growth stage
Female
Fos-Related Antigen-2 - deficiency
Fos-Related Antigen-2 - genetics
Fos-Related Antigen-2 - metabolism
General aspects
Humanities and Social Sciences
Hypoxia
Hypoxia - metabolism
Hypoxia - pathology
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Hypoxia-Inducible Factor-Proline Dioxygenases
Immediate-Early Proteins - metabolism
Inactivation
letter
Leukemia
Leukemia Inhibitory Factor - deficiency
Leukemia Inhibitory Factor - genetics
Leukemia Inhibitory Factor - metabolism
Leukemia Inhibitory Factor Receptor alpha Subunit - metabolism
Male
Medical sciences
Mice
multidisciplinary
Multiple myeloma
Osteoclasts - cytology
Osteoclasts - metabolism
Osteoclasts - pathology
Osteoporosis
Procollagen-Proline Dioxygenase
Protein C
Proteins
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins c-bcl-2
Rheumatoid arthritis
Science
Science (multidisciplinary)
Signal Transduction
title Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteoclast%20size%20is%20controlled%20by%20Fra-2%20through%20LIF/LIF-receptor%20signalling%20and%20hypoxia&rft.jtitle=Nature&rft.au=Amling,%20Michael&rft.date=2008-07-10&rft.volume=454&rft.issue=7201&rft.spage=221&rft.epage=225&rft.pages=221-225&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature07019&rft_dat=%3Cgale_proqu%3EA632098155%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204547674&rft_id=info:pmid/18548006&rft_galeid=A632098155&rfr_iscdi=true