Dynamic Scaling in Chemical Ecology
Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If...
Gespeichert in:
Veröffentlicht in: | Journal of chemical ecology 2008-07, Vol.34 (7), p.822-836 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 836 |
---|---|
container_issue | 7 |
container_start_page | 822 |
container_title | Journal of chemical ecology |
container_volume | 34 |
creator | Zimmer, Richard K Zimmer, Cheryl Ann |
description | Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If appropriately scaled, laboratory simulations of physical regimes, coupled with natural rates of chemical cue/signal emission, facilitate interpretation of field results. From a meta-analysis of papers published in 11 journals over the last 22 years (1984-1986, 1994-1996, 2004-2006), complete dynamic scaling was rare in both field and laboratory studies. Studies in terrestrial systems often involved chemical determinations, but rarely simulated natural aerodynamics in laboratory wind tunnels. Research in aquatic (marine and freshwater) systems seldom scaled either the chemical or physical environments. Moreover, nearly all research, in all environments, focused on organism-level processes without incorporating the effects of individual-based behavior on populations, communities, and ecosystems. As a result, relationships between chemosensory-mediated behavior and ecological function largely remain unexplored. Outstanding exceptions serve as useful examples for guiding future research. Advanced conceptual frameworks and refined techniques offer exciting opportunities for identifying the ecological significance of chemical cues/signals in behavioral interactions and for incorporating individual effects at higher levels of biological organization. |
doi_str_mv | 10.1007/s10886-008-9486-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69308591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897390541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-20cba94cc03dd7e4f91c13ad5b94d47ad972691748477d0b1bab50b8e38105963</originalsourceid><addsrcrecordid>eNqFkU1LAzEURYMotlZ_gBstCu5G38t3llLrBxRc1K5DJpPWKdMZnbSL_ntTplBwoauE5Nz7yAkhlwj3CKAeIoLWMgPQmeFpw45IH4ViGQqJx6QPYHQGjGGPnMW4BAAqtTglPdSCotTQJ7dP29qtSj-celeV9WJY1sPRZ0gnrhqOfVM1i-05OZm7KoaL_Togs-fxx-g1m7y_vI0eJ5nnlK8zCj53hnsPrChU4HODHpkrRG54wZUrjKLSoOKaK1VAjrnLBeQ6MI0gjGQDctf1frXN9ybEtV2V0YeqcnVoNtFKw0ALg_-CFKnmVNIE3vwCl82mrdMjEoOUKi1VgrCDfNvE2Ia5_WrLlWu3FsHuPNvOs02e7c6zZSlztS_e5KtQHBJ7sQmgHRDTVb0I7WHyX63XXWjuGusWbRntbEoBWfpI5AI5-wFKXI3V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211227867</pqid></control><display><type>article</type><title>Dynamic Scaling in Chemical Ecology</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zimmer, Richard K ; Zimmer, Cheryl Ann</creator><creatorcontrib>Zimmer, Richard K ; Zimmer, Cheryl Ann</creatorcontrib><description>Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If appropriately scaled, laboratory simulations of physical regimes, coupled with natural rates of chemical cue/signal emission, facilitate interpretation of field results. From a meta-analysis of papers published in 11 journals over the last 22 years (1984-1986, 1994-1996, 2004-2006), complete dynamic scaling was rare in both field and laboratory studies. Studies in terrestrial systems often involved chemical determinations, but rarely simulated natural aerodynamics in laboratory wind tunnels. Research in aquatic (marine and freshwater) systems seldom scaled either the chemical or physical environments. Moreover, nearly all research, in all environments, focused on organism-level processes without incorporating the effects of individual-based behavior on populations, communities, and ecosystems. As a result, relationships between chemosensory-mediated behavior and ecological function largely remain unexplored. Outstanding exceptions serve as useful examples for guiding future research. Advanced conceptual frameworks and refined techniques offer exciting opportunities for identifying the ecological significance of chemical cues/signals in behavioral interactions and for incorporating individual effects at higher levels of biological organization.</description><identifier>ISSN: 0098-0331</identifier><identifier>EISSN: 1573-1561</identifier><identifier>DOI: 10.1007/s10886-008-9486-3</identifier><identifier>PMID: 18521680</identifier><language>eng</language><publisher>New York: New York : Springer-Verlag</publisher><subject>Aerodynamics ; Agriculture ; Animals ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Chemical ecology ; Chemical Phenomena ; Chemical stimuli ; Chemistry ; Chemosensory perception ; Ecological function ; Ecology ; Entomology ; Life Sciences ; Models, Biological ; Odors ; Physical Phenomena ; Physics ; Research Design ; Review Article ; Wind tunnels</subject><ispartof>Journal of chemical ecology, 2008-07, Vol.34 (7), p.822-836</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-20cba94cc03dd7e4f91c13ad5b94d47ad972691748477d0b1bab50b8e38105963</citedby><cites>FETCH-LOGICAL-c424t-20cba94cc03dd7e4f91c13ad5b94d47ad972691748477d0b1bab50b8e38105963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10886-008-9486-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10886-008-9486-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18521680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmer, Richard K</creatorcontrib><creatorcontrib>Zimmer, Cheryl Ann</creatorcontrib><title>Dynamic Scaling in Chemical Ecology</title><title>Journal of chemical ecology</title><addtitle>J Chem Ecol</addtitle><addtitle>J Chem Ecol</addtitle><description>Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If appropriately scaled, laboratory simulations of physical regimes, coupled with natural rates of chemical cue/signal emission, facilitate interpretation of field results. From a meta-analysis of papers published in 11 journals over the last 22 years (1984-1986, 1994-1996, 2004-2006), complete dynamic scaling was rare in both field and laboratory studies. Studies in terrestrial systems often involved chemical determinations, but rarely simulated natural aerodynamics in laboratory wind tunnels. Research in aquatic (marine and freshwater) systems seldom scaled either the chemical or physical environments. Moreover, nearly all research, in all environments, focused on organism-level processes without incorporating the effects of individual-based behavior on populations, communities, and ecosystems. As a result, relationships between chemosensory-mediated behavior and ecological function largely remain unexplored. Outstanding exceptions serve as useful examples for guiding future research. Advanced conceptual frameworks and refined techniques offer exciting opportunities for identifying the ecological significance of chemical cues/signals in behavioral interactions and for incorporating individual effects at higher levels of biological organization.</description><subject>Aerodynamics</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chemical ecology</subject><subject>Chemical Phenomena</subject><subject>Chemical stimuli</subject><subject>Chemistry</subject><subject>Chemosensory perception</subject><subject>Ecological function</subject><subject>Ecology</subject><subject>Entomology</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Odors</subject><subject>Physical Phenomena</subject><subject>Physics</subject><subject>Research Design</subject><subject>Review Article</subject><subject>Wind tunnels</subject><issn>0098-0331</issn><issn>1573-1561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LAzEURYMotlZ_gBstCu5G38t3llLrBxRc1K5DJpPWKdMZnbSL_ntTplBwoauE5Nz7yAkhlwj3CKAeIoLWMgPQmeFpw45IH4ViGQqJx6QPYHQGjGGPnMW4BAAqtTglPdSCotTQJ7dP29qtSj-celeV9WJY1sPRZ0gnrhqOfVM1i-05OZm7KoaL_Togs-fxx-g1m7y_vI0eJ5nnlK8zCj53hnsPrChU4HODHpkrRG54wZUrjKLSoOKaK1VAjrnLBeQ6MI0gjGQDctf1frXN9ybEtV2V0YeqcnVoNtFKw0ALg_-CFKnmVNIE3vwCl82mrdMjEoOUKi1VgrCDfNvE2Ia5_WrLlWu3FsHuPNvOs02e7c6zZSlztS_e5KtQHBJ7sQmgHRDTVb0I7WHyX63XXWjuGusWbRntbEoBWfpI5AI5-wFKXI3V</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Zimmer, Richard K</creator><creator>Zimmer, Cheryl Ann</creator><general>New York : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Dynamic Scaling in Chemical Ecology</title><author>Zimmer, Richard K ; Zimmer, Cheryl Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-20cba94cc03dd7e4f91c13ad5b94d47ad972691748477d0b1bab50b8e38105963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerodynamics</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chemical ecology</topic><topic>Chemical Phenomena</topic><topic>Chemical stimuli</topic><topic>Chemistry</topic><topic>Chemosensory perception</topic><topic>Ecological function</topic><topic>Ecology</topic><topic>Entomology</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Odors</topic><topic>Physical Phenomena</topic><topic>Physics</topic><topic>Research Design</topic><topic>Review Article</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmer, Richard K</creatorcontrib><creatorcontrib>Zimmer, Cheryl Ann</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmer, Richard K</au><au>Zimmer, Cheryl Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Scaling in Chemical Ecology</atitle><jtitle>Journal of chemical ecology</jtitle><stitle>J Chem Ecol</stitle><addtitle>J Chem Ecol</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>34</volume><issue>7</issue><spage>822</spage><epage>836</epage><pages>822-836</pages><issn>0098-0331</issn><eissn>1573-1561</eissn><abstract>Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If appropriately scaled, laboratory simulations of physical regimes, coupled with natural rates of chemical cue/signal emission, facilitate interpretation of field results. From a meta-analysis of papers published in 11 journals over the last 22 years (1984-1986, 1994-1996, 2004-2006), complete dynamic scaling was rare in both field and laboratory studies. Studies in terrestrial systems often involved chemical determinations, but rarely simulated natural aerodynamics in laboratory wind tunnels. Research in aquatic (marine and freshwater) systems seldom scaled either the chemical or physical environments. Moreover, nearly all research, in all environments, focused on organism-level processes without incorporating the effects of individual-based behavior on populations, communities, and ecosystems. As a result, relationships between chemosensory-mediated behavior and ecological function largely remain unexplored. Outstanding exceptions serve as useful examples for guiding future research. Advanced conceptual frameworks and refined techniques offer exciting opportunities for identifying the ecological significance of chemical cues/signals in behavioral interactions and for incorporating individual effects at higher levels of biological organization.</abstract><cop>New York</cop><pub>New York : Springer-Verlag</pub><pmid>18521680</pmid><doi>10.1007/s10886-008-9486-3</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-0331 |
ispartof | Journal of chemical ecology, 2008-07, Vol.34 (7), p.822-836 |
issn | 0098-0331 1573-1561 |
language | eng |
recordid | cdi_proquest_miscellaneous_69308591 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Aerodynamics Agriculture Animals Biochemistry Biological Microscopy Biomedical and Life Sciences Chemical ecology Chemical Phenomena Chemical stimuli Chemistry Chemosensory perception Ecological function Ecology Entomology Life Sciences Models, Biological Odors Physical Phenomena Physics Research Design Review Article Wind tunnels |
title | Dynamic Scaling in Chemical Ecology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Scaling%20in%20Chemical%20Ecology&rft.jtitle=Journal%20of%20chemical%20ecology&rft.au=Zimmer,%20Richard%20K&rft.date=2008-07-01&rft.volume=34&rft.issue=7&rft.spage=822&rft.epage=836&rft.pages=822-836&rft.issn=0098-0331&rft.eissn=1573-1561&rft_id=info:doi/10.1007/s10886-008-9486-3&rft_dat=%3Cproquest_cross%3E1897390541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211227867&rft_id=info:pmid/18521680&rfr_iscdi=true |