Dynamic Scaling in Chemical Ecology

Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical ecology 2008-07, Vol.34 (7), p.822-836
Hauptverfasser: Zimmer, Richard K, Zimmer, Cheryl Ann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 836
container_issue 7
container_start_page 822
container_title Journal of chemical ecology
container_volume 34
creator Zimmer, Richard K
Zimmer, Cheryl Ann
description Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If appropriately scaled, laboratory simulations of physical regimes, coupled with natural rates of chemical cue/signal emission, facilitate interpretation of field results. From a meta-analysis of papers published in 11 journals over the last 22 years (1984-1986, 1994-1996, 2004-2006), complete dynamic scaling was rare in both field and laboratory studies. Studies in terrestrial systems often involved chemical determinations, but rarely simulated natural aerodynamics in laboratory wind tunnels. Research in aquatic (marine and freshwater) systems seldom scaled either the chemical or physical environments. Moreover, nearly all research, in all environments, focused on organism-level processes without incorporating the effects of individual-based behavior on populations, communities, and ecosystems. As a result, relationships between chemosensory-mediated behavior and ecological function largely remain unexplored. Outstanding exceptions serve as useful examples for guiding future research. Advanced conceptual frameworks and refined techniques offer exciting opportunities for identifying the ecological significance of chemical cues/signals in behavioral interactions and for incorporating individual effects at higher levels of biological organization.
doi_str_mv 10.1007/s10886-008-9486-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69308591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897390541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-20cba94cc03dd7e4f91c13ad5b94d47ad972691748477d0b1bab50b8e38105963</originalsourceid><addsrcrecordid>eNqFkU1LAzEURYMotlZ_gBstCu5G38t3llLrBxRc1K5DJpPWKdMZnbSL_ntTplBwoauE5Nz7yAkhlwj3CKAeIoLWMgPQmeFpw45IH4ViGQqJx6QPYHQGjGGPnMW4BAAqtTglPdSCotTQJ7dP29qtSj-celeV9WJY1sPRZ0gnrhqOfVM1i-05OZm7KoaL_Togs-fxx-g1m7y_vI0eJ5nnlK8zCj53hnsPrChU4HODHpkrRG54wZUrjKLSoOKaK1VAjrnLBeQ6MI0gjGQDctf1frXN9ybEtV2V0YeqcnVoNtFKw0ALg_-CFKnmVNIE3vwCl82mrdMjEoOUKi1VgrCDfNvE2Ia5_WrLlWu3FsHuPNvOs02e7c6zZSlztS_e5KtQHBJ7sQmgHRDTVb0I7WHyX63XXWjuGusWbRntbEoBWfpI5AI5-wFKXI3V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211227867</pqid></control><display><type>article</type><title>Dynamic Scaling in Chemical Ecology</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zimmer, Richard K ; Zimmer, Cheryl Ann</creator><creatorcontrib>Zimmer, Richard K ; Zimmer, Cheryl Ann</creatorcontrib><description>Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If appropriately scaled, laboratory simulations of physical regimes, coupled with natural rates of chemical cue/signal emission, facilitate interpretation of field results. From a meta-analysis of papers published in 11 journals over the last 22 years (1984-1986, 1994-1996, 2004-2006), complete dynamic scaling was rare in both field and laboratory studies. Studies in terrestrial systems often involved chemical determinations, but rarely simulated natural aerodynamics in laboratory wind tunnels. Research in aquatic (marine and freshwater) systems seldom scaled either the chemical or physical environments. Moreover, nearly all research, in all environments, focused on organism-level processes without incorporating the effects of individual-based behavior on populations, communities, and ecosystems. As a result, relationships between chemosensory-mediated behavior and ecological function largely remain unexplored. Outstanding exceptions serve as useful examples for guiding future research. Advanced conceptual frameworks and refined techniques offer exciting opportunities for identifying the ecological significance of chemical cues/signals in behavioral interactions and for incorporating individual effects at higher levels of biological organization.</description><identifier>ISSN: 0098-0331</identifier><identifier>EISSN: 1573-1561</identifier><identifier>DOI: 10.1007/s10886-008-9486-3</identifier><identifier>PMID: 18521680</identifier><language>eng</language><publisher>New York: New York : Springer-Verlag</publisher><subject>Aerodynamics ; Agriculture ; Animals ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Chemical ecology ; Chemical Phenomena ; Chemical stimuli ; Chemistry ; Chemosensory perception ; Ecological function ; Ecology ; Entomology ; Life Sciences ; Models, Biological ; Odors ; Physical Phenomena ; Physics ; Research Design ; Review Article ; Wind tunnels</subject><ispartof>Journal of chemical ecology, 2008-07, Vol.34 (7), p.822-836</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-20cba94cc03dd7e4f91c13ad5b94d47ad972691748477d0b1bab50b8e38105963</citedby><cites>FETCH-LOGICAL-c424t-20cba94cc03dd7e4f91c13ad5b94d47ad972691748477d0b1bab50b8e38105963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10886-008-9486-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10886-008-9486-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18521680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmer, Richard K</creatorcontrib><creatorcontrib>Zimmer, Cheryl Ann</creatorcontrib><title>Dynamic Scaling in Chemical Ecology</title><title>Journal of chemical ecology</title><addtitle>J Chem Ecol</addtitle><addtitle>J Chem Ecol</addtitle><description>Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If appropriately scaled, laboratory simulations of physical regimes, coupled with natural rates of chemical cue/signal emission, facilitate interpretation of field results. From a meta-analysis of papers published in 11 journals over the last 22 years (1984-1986, 1994-1996, 2004-2006), complete dynamic scaling was rare in both field and laboratory studies. Studies in terrestrial systems often involved chemical determinations, but rarely simulated natural aerodynamics in laboratory wind tunnels. Research in aquatic (marine and freshwater) systems seldom scaled either the chemical or physical environments. Moreover, nearly all research, in all environments, focused on organism-level processes without incorporating the effects of individual-based behavior on populations, communities, and ecosystems. As a result, relationships between chemosensory-mediated behavior and ecological function largely remain unexplored. Outstanding exceptions serve as useful examples for guiding future research. Advanced conceptual frameworks and refined techniques offer exciting opportunities for identifying the ecological significance of chemical cues/signals in behavioral interactions and for incorporating individual effects at higher levels of biological organization.</description><subject>Aerodynamics</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chemical ecology</subject><subject>Chemical Phenomena</subject><subject>Chemical stimuli</subject><subject>Chemistry</subject><subject>Chemosensory perception</subject><subject>Ecological function</subject><subject>Ecology</subject><subject>Entomology</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Odors</subject><subject>Physical Phenomena</subject><subject>Physics</subject><subject>Research Design</subject><subject>Review Article</subject><subject>Wind tunnels</subject><issn>0098-0331</issn><issn>1573-1561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LAzEURYMotlZ_gBstCu5G38t3llLrBxRc1K5DJpPWKdMZnbSL_ntTplBwoauE5Nz7yAkhlwj3CKAeIoLWMgPQmeFpw45IH4ViGQqJx6QPYHQGjGGPnMW4BAAqtTglPdSCotTQJ7dP29qtSj-celeV9WJY1sPRZ0gnrhqOfVM1i-05OZm7KoaL_Togs-fxx-g1m7y_vI0eJ5nnlK8zCj53hnsPrChU4HODHpkrRG54wZUrjKLSoOKaK1VAjrnLBeQ6MI0gjGQDctf1frXN9ybEtV2V0YeqcnVoNtFKw0ALg_-CFKnmVNIE3vwCl82mrdMjEoOUKi1VgrCDfNvE2Ia5_WrLlWu3FsHuPNvOs02e7c6zZSlztS_e5KtQHBJ7sQmgHRDTVb0I7WHyX63XXWjuGusWbRntbEoBWfpI5AI5-wFKXI3V</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Zimmer, Richard K</creator><creator>Zimmer, Cheryl Ann</creator><general>New York : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Dynamic Scaling in Chemical Ecology</title><author>Zimmer, Richard K ; Zimmer, Cheryl Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-20cba94cc03dd7e4f91c13ad5b94d47ad972691748477d0b1bab50b8e38105963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerodynamics</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chemical ecology</topic><topic>Chemical Phenomena</topic><topic>Chemical stimuli</topic><topic>Chemistry</topic><topic>Chemosensory perception</topic><topic>Ecological function</topic><topic>Ecology</topic><topic>Entomology</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Odors</topic><topic>Physical Phenomena</topic><topic>Physics</topic><topic>Research Design</topic><topic>Review Article</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmer, Richard K</creatorcontrib><creatorcontrib>Zimmer, Cheryl Ann</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmer, Richard K</au><au>Zimmer, Cheryl Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Scaling in Chemical Ecology</atitle><jtitle>Journal of chemical ecology</jtitle><stitle>J Chem Ecol</stitle><addtitle>J Chem Ecol</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>34</volume><issue>7</issue><spage>822</spage><epage>836</epage><pages>822-836</pages><issn>0098-0331</issn><eissn>1573-1561</eissn><abstract>Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If appropriately scaled, laboratory simulations of physical regimes, coupled with natural rates of chemical cue/signal emission, facilitate interpretation of field results. From a meta-analysis of papers published in 11 journals over the last 22 years (1984-1986, 1994-1996, 2004-2006), complete dynamic scaling was rare in both field and laboratory studies. Studies in terrestrial systems often involved chemical determinations, but rarely simulated natural aerodynamics in laboratory wind tunnels. Research in aquatic (marine and freshwater) systems seldom scaled either the chemical or physical environments. Moreover, nearly all research, in all environments, focused on organism-level processes without incorporating the effects of individual-based behavior on populations, communities, and ecosystems. As a result, relationships between chemosensory-mediated behavior and ecological function largely remain unexplored. Outstanding exceptions serve as useful examples for guiding future research. Advanced conceptual frameworks and refined techniques offer exciting opportunities for identifying the ecological significance of chemical cues/signals in behavioral interactions and for incorporating individual effects at higher levels of biological organization.</abstract><cop>New York</cop><pub>New York : Springer-Verlag</pub><pmid>18521680</pmid><doi>10.1007/s10886-008-9486-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-0331
ispartof Journal of chemical ecology, 2008-07, Vol.34 (7), p.822-836
issn 0098-0331
1573-1561
language eng
recordid cdi_proquest_miscellaneous_69308591
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Aerodynamics
Agriculture
Animals
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Chemical ecology
Chemical Phenomena
Chemical stimuli
Chemistry
Chemosensory perception
Ecological function
Ecology
Entomology
Life Sciences
Models, Biological
Odors
Physical Phenomena
Physics
Research Design
Review Article
Wind tunnels
title Dynamic Scaling in Chemical Ecology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Scaling%20in%20Chemical%20Ecology&rft.jtitle=Journal%20of%20chemical%20ecology&rft.au=Zimmer,%20Richard%20K&rft.date=2008-07-01&rft.volume=34&rft.issue=7&rft.spage=822&rft.epage=836&rft.pages=822-836&rft.issn=0098-0331&rft.eissn=1573-1561&rft_id=info:doi/10.1007/s10886-008-9486-3&rft_dat=%3Cproquest_cross%3E1897390541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211227867&rft_id=info:pmid/18521680&rfr_iscdi=true