Context related artefact detection in prolonged EEG recordings
The need for reliable detection of artefacts in raw and processed EEG is widely acknowledged. Although different EEG analysis systems have been described, only few general applicable artefact recognition techniques have emerged. This paper tackles the problem of artefact detection in seven 24 h EEG...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 1999-11, Vol.60 (3), p.183-196 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 3 |
container_start_page | 183 |
container_title | Computer methods and programs in biomedicine |
container_volume | 60 |
creator | van de Velde, Maarten Ghosh, I.Robert Cluitmans, Pierre J.M. |
description | The need for reliable detection of artefacts in raw and processed EEG is widely acknowledged. Although different EEG analysis systems have been described, only few general applicable artefact recognition techniques have emerged. This paper tackles the problem of artefact detection in seven 24 h EEG recordings in the intensive care unit. ICU recordings have received less attention than, e.g. epilepsy monitoring, although recordings in this environment present an interesting application area. The EEG data used here was recorded during the difficult circumstances of an explorative ICU study. The data set includes a diverse set of EEG patterns, as well as EEG artefacts. The study investigates objective artefact detection methods based on statistical differences between signal parameters, using time-varying autoregressive modelling (AR) and Slope detection. In addition to matching the performance of artefact detection against two human observers, the study focuses on the optimal settings for context incorporation by testing the algorithms for different time windows and epoch lengths. Results indicate that a relatively short period (20–40 s) provides sufficient context information for the methods used. The combined AR and Slope detection parameters yielded good performance, detecting approximately 90% of the artefacts as indicated by the consensus score of the human observers. |
doi_str_mv | 10.1016/S0169-2607(99)00013-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69307261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260799000139</els_id><sourcerecordid>26919920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-86cf825bc70b27c464d0ce64f358a36a6c78f0a09ed9c8efb50b2dbb059bdbb3</originalsourceid><addsrcrecordid>eNqF0E1PwyAYwHFiNDpfPoKmB2P0UAVaoFw0ZpnTZIkHdycUHgymaxWY0W8vc4t68wIHfsCTP0LHBF8STPjVU15kSTkW51JeYIxJVcotNCKNoKVgnG2j0Q_ZQ_sxvmREGeO7aI9gJiQjdISux0Of4CMVATqdwBY6JHDapMJCApP80Be-L17D0A39cz6fTKbZmiFY3z_HQ7TjdBfhaLMfoPndZD6-L2eP04fx7aw0NSWpbLhxDWWtEbilwtS8ttgAr13FGl1xzY1oHNZYgpWmAdey7GzbYibbvFUH6Gz9bJ7jbQkxqYWPBrpO9zAso-KywoJy8i-kXBIpKc6QraEJQ4wBnHoNfqHDpyJYrQKr78BqVU9Jqb4DK5nvnWw-WLYLsH9urYtmcLoBOhrduaB74-Ovkw3Fos7sZs0gV3v3EFQ0HnoD1ue6SdnB_zPJF1Tzl0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26919920</pqid></control><display><type>article</type><title>Context related artefact detection in prolonged EEG recordings</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>van de Velde, Maarten ; Ghosh, I.Robert ; Cluitmans, Pierre J.M.</creator><creatorcontrib>van de Velde, Maarten ; Ghosh, I.Robert ; Cluitmans, Pierre J.M.</creatorcontrib><description>The need for reliable detection of artefacts in raw and processed EEG is widely acknowledged. Although different EEG analysis systems have been described, only few general applicable artefact recognition techniques have emerged. This paper tackles the problem of artefact detection in seven 24 h EEG recordings in the intensive care unit. ICU recordings have received less attention than, e.g. epilepsy monitoring, although recordings in this environment present an interesting application area. The EEG data used here was recorded during the difficult circumstances of an explorative ICU study. The data set includes a diverse set of EEG patterns, as well as EEG artefacts. The study investigates objective artefact detection methods based on statistical differences between signal parameters, using time-varying autoregressive modelling (AR) and Slope detection. In addition to matching the performance of artefact detection against two human observers, the study focuses on the optimal settings for context incorporation by testing the algorithms for different time windows and epoch lengths. Results indicate that a relatively short period (20–40 s) provides sufficient context information for the methods used. The combined AR and Slope detection parameters yielded good performance, detecting approximately 90% of the artefacts as indicated by the consensus score of the human observers.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/S0169-2607(99)00013-9</identifier><identifier>PMID: 10579512</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>Adult ; Aged ; Amplitude analysis ; Analysis of Variance ; Artefact detection ; Autoregressive modelling ; Biological and medical sciences ; EEG ; Electrodiagnosis. Electric activity recording ; Electroencephalography - methods ; Epilepsy - diagnosis ; Feasibility Studies ; Humans ; ICU ; Investigative techniques, diagnostic techniques (general aspects) ; Male ; Medical sciences ; Middle Aged ; Models, Statistical ; Nervous system ; Observer Variation ; Regression Analysis ; Sensitivity and Specificity ; Validation</subject><ispartof>Computer methods and programs in biomedicine, 1999-11, Vol.60 (3), p.183-196</ispartof><rights>1999 Elsevier Science Ireland Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-86cf825bc70b27c464d0ce64f358a36a6c78f0a09ed9c8efb50b2dbb059bdbb3</citedby><cites>FETCH-LOGICAL-c421t-86cf825bc70b27c464d0ce64f358a36a6c78f0a09ed9c8efb50b2dbb059bdbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0169-2607(99)00013-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1982074$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10579512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van de Velde, Maarten</creatorcontrib><creatorcontrib>Ghosh, I.Robert</creatorcontrib><creatorcontrib>Cluitmans, Pierre J.M.</creatorcontrib><title>Context related artefact detection in prolonged EEG recordings</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>The need for reliable detection of artefacts in raw and processed EEG is widely acknowledged. Although different EEG analysis systems have been described, only few general applicable artefact recognition techniques have emerged. This paper tackles the problem of artefact detection in seven 24 h EEG recordings in the intensive care unit. ICU recordings have received less attention than, e.g. epilepsy monitoring, although recordings in this environment present an interesting application area. The EEG data used here was recorded during the difficult circumstances of an explorative ICU study. The data set includes a diverse set of EEG patterns, as well as EEG artefacts. The study investigates objective artefact detection methods based on statistical differences between signal parameters, using time-varying autoregressive modelling (AR) and Slope detection. In addition to matching the performance of artefact detection against two human observers, the study focuses on the optimal settings for context incorporation by testing the algorithms for different time windows and epoch lengths. Results indicate that a relatively short period (20–40 s) provides sufficient context information for the methods used. The combined AR and Slope detection parameters yielded good performance, detecting approximately 90% of the artefacts as indicated by the consensus score of the human observers.</description><subject>Adult</subject><subject>Aged</subject><subject>Amplitude analysis</subject><subject>Analysis of Variance</subject><subject>Artefact detection</subject><subject>Autoregressive modelling</subject><subject>Biological and medical sciences</subject><subject>EEG</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy - diagnosis</subject><subject>Feasibility Studies</subject><subject>Humans</subject><subject>ICU</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Nervous system</subject><subject>Observer Variation</subject><subject>Regression Analysis</subject><subject>Sensitivity and Specificity</subject><subject>Validation</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1PwyAYwHFiNDpfPoKmB2P0UAVaoFw0ZpnTZIkHdycUHgymaxWY0W8vc4t68wIHfsCTP0LHBF8STPjVU15kSTkW51JeYIxJVcotNCKNoKVgnG2j0Q_ZQ_sxvmREGeO7aI9gJiQjdISux0Of4CMVATqdwBY6JHDapMJCApP80Be-L17D0A39cz6fTKbZmiFY3z_HQ7TjdBfhaLMfoPndZD6-L2eP04fx7aw0NSWpbLhxDWWtEbilwtS8ttgAr13FGl1xzY1oHNZYgpWmAdey7GzbYibbvFUH6Gz9bJ7jbQkxqYWPBrpO9zAso-KywoJy8i-kXBIpKc6QraEJQ4wBnHoNfqHDpyJYrQKr78BqVU9Jqb4DK5nvnWw-WLYLsH9urYtmcLoBOhrduaB74-Ovkw3Fos7sZs0gV3v3EFQ0HnoD1ue6SdnB_zPJF1Tzl0A</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>van de Velde, Maarten</creator><creator>Ghosh, I.Robert</creator><creator>Cluitmans, Pierre J.M.</creator><general>Elsevier Ireland Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19991101</creationdate><title>Context related artefact detection in prolonged EEG recordings</title><author>van de Velde, Maarten ; Ghosh, I.Robert ; Cluitmans, Pierre J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-86cf825bc70b27c464d0ce64f358a36a6c78f0a09ed9c8efb50b2dbb059bdbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Amplitude analysis</topic><topic>Analysis of Variance</topic><topic>Artefact detection</topic><topic>Autoregressive modelling</topic><topic>Biological and medical sciences</topic><topic>EEG</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy - diagnosis</topic><topic>Feasibility Studies</topic><topic>Humans</topic><topic>ICU</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Nervous system</topic><topic>Observer Variation</topic><topic>Regression Analysis</topic><topic>Sensitivity and Specificity</topic><topic>Validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van de Velde, Maarten</creatorcontrib><creatorcontrib>Ghosh, I.Robert</creatorcontrib><creatorcontrib>Cluitmans, Pierre J.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van de Velde, Maarten</au><au>Ghosh, I.Robert</au><au>Cluitmans, Pierre J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context related artefact detection in prolonged EEG recordings</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>1999-11-01</date><risdate>1999</risdate><volume>60</volume><issue>3</issue><spage>183</spage><epage>196</epage><pages>183-196</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>The need for reliable detection of artefacts in raw and processed EEG is widely acknowledged. Although different EEG analysis systems have been described, only few general applicable artefact recognition techniques have emerged. This paper tackles the problem of artefact detection in seven 24 h EEG recordings in the intensive care unit. ICU recordings have received less attention than, e.g. epilepsy monitoring, although recordings in this environment present an interesting application area. The EEG data used here was recorded during the difficult circumstances of an explorative ICU study. The data set includes a diverse set of EEG patterns, as well as EEG artefacts. The study investigates objective artefact detection methods based on statistical differences between signal parameters, using time-varying autoregressive modelling (AR) and Slope detection. In addition to matching the performance of artefact detection against two human observers, the study focuses on the optimal settings for context incorporation by testing the algorithms for different time windows and epoch lengths. Results indicate that a relatively short period (20–40 s) provides sufficient context information for the methods used. The combined AR and Slope detection parameters yielded good performance, detecting approximately 90% of the artefacts as indicated by the consensus score of the human observers.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>10579512</pmid><doi>10.1016/S0169-2607(99)00013-9</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 1999-11, Vol.60 (3), p.183-196 |
issn | 0169-2607 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_69307261 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adult Aged Amplitude analysis Analysis of Variance Artefact detection Autoregressive modelling Biological and medical sciences EEG Electrodiagnosis. Electric activity recording Electroencephalography - methods Epilepsy - diagnosis Feasibility Studies Humans ICU Investigative techniques, diagnostic techniques (general aspects) Male Medical sciences Middle Aged Models, Statistical Nervous system Observer Variation Regression Analysis Sensitivity and Specificity Validation |
title | Context related artefact detection in prolonged EEG recordings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T23%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context%20related%20artefact%20detection%20in%20prolonged%20EEG%20recordings&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=van%20de%20Velde,%20Maarten&rft.date=1999-11-01&rft.volume=60&rft.issue=3&rft.spage=183&rft.epage=196&rft.pages=183-196&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/S0169-2607(99)00013-9&rft_dat=%3Cproquest_cross%3E26919920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26919920&rft_id=info:pmid/10579512&rft_els_id=S0169260799000139&rfr_iscdi=true |