Involvement of CBF Transcription Factors in Winter Hardiness in Birch
Cold acclimation of plants involves extensive reprogramming of gene expression. In Arabidopsis (Arabidopsis thaliana), three cold-inducible transcriptional activators designated CBF1 to -3/DREB1a to -c have been shown to play an important regulatory role in this acclimation process. Similarly to Ara...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2008-07, Vol.147 (3), p.1199-1211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1211 |
---|---|
container_issue | 3 |
container_start_page | 1199 |
container_title | Plant physiology (Bethesda) |
container_volume | 147 |
creator | Welling, Annikki Palva, E. Tapio |
description | Cold acclimation of plants involves extensive reprogramming of gene expression. In Arabidopsis (Arabidopsis thaliana), three cold-inducible transcriptional activators designated CBF1 to -3/DREB1a to -c have been shown to play an important regulatory role in this acclimation process. Similarly to Arabidopsis, boreal zone trees can increase their freezing tolerance (FT) in response to low temperature during the growing season. However, maximal FT of these trees requires short daylength-induced dormancy development followed by exposure to both low and freezing temperatures. To elucidate the molecular basis of FT in overwintering trees, we characterized the role of birch (Betula pendula) CBF transcription factors in the cold acclimation process. We identified four putative CBF orthologs in a birch expressed sequence tag collection designated BpCBF1 to -4. Ectopic expression of birch CBFs in Arabidopsis resulted in constitutive expression of endogenous CBF target genes and increased FT of nonacclimated transgenic plants. In addition, these plants showed stunted growth and delayed flowering, typical features for CBF-overexpressing plants. Expression analysis in birch showed that BpCBF1 to -4 are low temperature responsive but differentially regulated in dormant and growing plants, the expression being delayed in dormant tissues. Freeze-thaw treatment, simulating wintertime conditions in nature, resulted in strong induction of BpCBF genes during thawing, followed by induction of a CBF target gene, BpLTI36. These results suggest that in addition to their role in cold acclimation during the growing season, birch CBFs appear to contribute to control of winter hardiness in birch. |
doi_str_mv | 10.1104/pp.108.117812 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_69299836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40065483</jstor_id><sourcerecordid>40065483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-53594ce052aefecc394dcc6afcede89bd595d8b4695da2834f6a2eb31da1e0cc3</originalsourceid><addsrcrecordid>eNqFks1PGzEQxa2qqKS0R47QvbS3peOPdexLpRIRQELqoaAeLcfrBaONvdibSP3vO3SjFE49zZPfT08zeibkmMIZpSC-DsMZBYV6rih7Q2a04axmjVBvyQwANSilD8n7Uh4BgHIq3pFDqoScC6lm5OI6blO_9Wsfxyp11eJ8Wd1mG4vLYRhDitXSujHlUoVY_Qpx9Lm6srkN0Ze_b-chu4cP5KCzffEfd_OI3C0vbhdX9c2Py-vF95vaNboZ64Y3WjgPDbO-885xLVrnpO2cb73SqxapVq2ExGGZ4qKTlvkVp62lHpA_It-m3GGzWvvW4dLZ9mbIYW3zb5NsMK-dGB7MfdoaJgRrmMCAL7uAnJ42voxmHYrzfW-jT5tipGZaKy7_CzIAwecSEKwn0OVUSvbdfhsK5rkhMwwolZkaQv705Qn_6F0lCHzeAbY423dYhgtlzzEQWlHJkTuZuMeC_ex9ASCx_Wf_0-R3Nhl7nzHj7ifDHwCgqWCg-B-YQ60j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20043760</pqid></control><display><type>article</type><title>Involvement of CBF Transcription Factors in Winter Hardiness in Birch</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Welling, Annikki ; Palva, E. Tapio</creator><creatorcontrib>Welling, Annikki ; Palva, E. Tapio</creatorcontrib><description>Cold acclimation of plants involves extensive reprogramming of gene expression. In Arabidopsis (Arabidopsis thaliana), three cold-inducible transcriptional activators designated CBF1 to -3/DREB1a to -c have been shown to play an important regulatory role in this acclimation process. Similarly to Arabidopsis, boreal zone trees can increase their freezing tolerance (FT) in response to low temperature during the growing season. However, maximal FT of these trees requires short daylength-induced dormancy development followed by exposure to both low and freezing temperatures. To elucidate the molecular basis of FT in overwintering trees, we characterized the role of birch (Betula pendula) CBF transcription factors in the cold acclimation process. We identified four putative CBF orthologs in a birch expressed sequence tag collection designated BpCBF1 to -4. Ectopic expression of birch CBFs in Arabidopsis resulted in constitutive expression of endogenous CBF target genes and increased FT of nonacclimated transgenic plants. In addition, these plants showed stunted growth and delayed flowering, typical features for CBF-overexpressing plants. Expression analysis in birch showed that BpCBF1 to -4 are low temperature responsive but differentially regulated in dormant and growing plants, the expression being delayed in dormant tissues. Freeze-thaw treatment, simulating wintertime conditions in nature, resulted in strong induction of BpCBF genes during thawing, followed by induction of a CBF target gene, BpLTI36. These results suggest that in addition to their role in cold acclimation during the growing season, birch CBFs appear to contribute to control of winter hardiness in birch.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.108.117812</identifier><identifier>PMID: 18467468</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Acclimatization ; Amino Acid Sequence ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis thaliana ; Betula - genetics ; Betula - metabolism ; Betula - physiology ; Betula pendula ; Biological and medical sciences ; Cold Temperature ; Environmental Stress and Adaptation to Stress ; Freezing ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Expression Regulation, Plant ; Genes ; Hardwood trees ; Low temperature ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Overwintering ; Plants ; Plants, Genetically Modified - physiology ; Sequence Analysis, DNA ; Thawing ; Transcription factors ; Transcription Factors - metabolism ; Transcription Factors - physiology ; Transcription. Transcription factor. Splicing. Rna processing</subject><ispartof>Plant physiology (Bethesda), 2008-07, Vol.147 (3), p.1199-1211</ispartof><rights>Copyright 2008 American Society of Plant Biologists</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2008, American Society of Plant Biologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-53594ce052aefecc394dcc6afcede89bd595d8b4695da2834f6a2eb31da1e0cc3</citedby><cites>FETCH-LOGICAL-c595t-53594ce052aefecc394dcc6afcede89bd595d8b4695da2834f6a2eb31da1e0cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40065483$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40065483$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20498163$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18467468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Welling, Annikki</creatorcontrib><creatorcontrib>Palva, E. Tapio</creatorcontrib><title>Involvement of CBF Transcription Factors in Winter Hardiness in Birch</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Cold acclimation of plants involves extensive reprogramming of gene expression. In Arabidopsis (Arabidopsis thaliana), three cold-inducible transcriptional activators designated CBF1 to -3/DREB1a to -c have been shown to play an important regulatory role in this acclimation process. Similarly to Arabidopsis, boreal zone trees can increase their freezing tolerance (FT) in response to low temperature during the growing season. However, maximal FT of these trees requires short daylength-induced dormancy development followed by exposure to both low and freezing temperatures. To elucidate the molecular basis of FT in overwintering trees, we characterized the role of birch (Betula pendula) CBF transcription factors in the cold acclimation process. We identified four putative CBF orthologs in a birch expressed sequence tag collection designated BpCBF1 to -4. Ectopic expression of birch CBFs in Arabidopsis resulted in constitutive expression of endogenous CBF target genes and increased FT of nonacclimated transgenic plants. In addition, these plants showed stunted growth and delayed flowering, typical features for CBF-overexpressing plants. Expression analysis in birch showed that BpCBF1 to -4 are low temperature responsive but differentially regulated in dormant and growing plants, the expression being delayed in dormant tissues. Freeze-thaw treatment, simulating wintertime conditions in nature, resulted in strong induction of BpCBF genes during thawing, followed by induction of a CBF target gene, BpLTI36. These results suggest that in addition to their role in cold acclimation during the growing season, birch CBFs appear to contribute to control of winter hardiness in birch.</description><subject>Acclimatization</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis thaliana</subject><subject>Betula - genetics</subject><subject>Betula - metabolism</subject><subject>Betula - physiology</subject><subject>Betula pendula</subject><subject>Biological and medical sciences</subject><subject>Cold Temperature</subject><subject>Environmental Stress and Adaptation to Stress</subject><subject>Freezing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Hardwood trees</subject><subject>Low temperature</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Overwintering</subject><subject>Plants</subject><subject>Plants, Genetically Modified - physiology</subject><subject>Sequence Analysis, DNA</subject><subject>Thawing</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription Factors - physiology</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1PGzEQxa2qqKS0R47QvbS3peOPdexLpRIRQELqoaAeLcfrBaONvdibSP3vO3SjFE49zZPfT08zeibkmMIZpSC-DsMZBYV6rih7Q2a04axmjVBvyQwANSilD8n7Uh4BgHIq3pFDqoScC6lm5OI6blO_9Wsfxyp11eJ8Wd1mG4vLYRhDitXSujHlUoVY_Qpx9Lm6srkN0Ze_b-chu4cP5KCzffEfd_OI3C0vbhdX9c2Py-vF95vaNboZ64Y3WjgPDbO-885xLVrnpO2cb73SqxapVq2ExGGZ4qKTlvkVp62lHpA_It-m3GGzWvvW4dLZ9mbIYW3zb5NsMK-dGB7MfdoaJgRrmMCAL7uAnJ42voxmHYrzfW-jT5tipGZaKy7_CzIAwecSEKwn0OVUSvbdfhsK5rkhMwwolZkaQv705Qn_6F0lCHzeAbY423dYhgtlzzEQWlHJkTuZuMeC_ex9ASCx_Wf_0-R3Nhl7nzHj7ifDHwCgqWCg-B-YQ60j</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Welling, Annikki</creator><creator>Palva, E. Tapio</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080701</creationdate><title>Involvement of CBF Transcription Factors in Winter Hardiness in Birch</title><author>Welling, Annikki ; Palva, E. Tapio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-53594ce052aefecc394dcc6afcede89bd595d8b4695da2834f6a2eb31da1e0cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acclimatization</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis thaliana</topic><topic>Betula - genetics</topic><topic>Betula - metabolism</topic><topic>Betula - physiology</topic><topic>Betula pendula</topic><topic>Biological and medical sciences</topic><topic>Cold Temperature</topic><topic>Environmental Stress and Adaptation to Stress</topic><topic>Freezing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Hardwood trees</topic><topic>Low temperature</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Overwintering</topic><topic>Plants</topic><topic>Plants, Genetically Modified - physiology</topic><topic>Sequence Analysis, DNA</topic><topic>Thawing</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription Factors - physiology</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Welling, Annikki</creatorcontrib><creatorcontrib>Palva, E. Tapio</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Welling, Annikki</au><au>Palva, E. Tapio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of CBF Transcription Factors in Winter Hardiness in Birch</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>147</volume><issue>3</issue><spage>1199</spage><epage>1211</epage><pages>1199-1211</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Cold acclimation of plants involves extensive reprogramming of gene expression. In Arabidopsis (Arabidopsis thaliana), three cold-inducible transcriptional activators designated CBF1 to -3/DREB1a to -c have been shown to play an important regulatory role in this acclimation process. Similarly to Arabidopsis, boreal zone trees can increase their freezing tolerance (FT) in response to low temperature during the growing season. However, maximal FT of these trees requires short daylength-induced dormancy development followed by exposure to both low and freezing temperatures. To elucidate the molecular basis of FT in overwintering trees, we characterized the role of birch (Betula pendula) CBF transcription factors in the cold acclimation process. We identified four putative CBF orthologs in a birch expressed sequence tag collection designated BpCBF1 to -4. Ectopic expression of birch CBFs in Arabidopsis resulted in constitutive expression of endogenous CBF target genes and increased FT of nonacclimated transgenic plants. In addition, these plants showed stunted growth and delayed flowering, typical features for CBF-overexpressing plants. Expression analysis in birch showed that BpCBF1 to -4 are low temperature responsive but differentially regulated in dormant and growing plants, the expression being delayed in dormant tissues. Freeze-thaw treatment, simulating wintertime conditions in nature, resulted in strong induction of BpCBF genes during thawing, followed by induction of a CBF target gene, BpLTI36. These results suggest that in addition to their role in cold acclimation during the growing season, birch CBFs appear to contribute to control of winter hardiness in birch.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>18467468</pmid><doi>10.1104/pp.108.117812</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2008-07, Vol.147 (3), p.1199-1211 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_69299836 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Acclimatization Amino Acid Sequence Arabidopsis - genetics Arabidopsis - physiology Arabidopsis thaliana Betula - genetics Betula - metabolism Betula - physiology Betula pendula Biological and medical sciences Cold Temperature Environmental Stress and Adaptation to Stress Freezing Fundamental and applied biological sciences. Psychology Gene Expression Gene Expression Regulation, Plant Genes Hardwood trees Low temperature Molecular and cellular biology Molecular genetics Molecular Sequence Data Overwintering Plants Plants, Genetically Modified - physiology Sequence Analysis, DNA Thawing Transcription factors Transcription Factors - metabolism Transcription Factors - physiology Transcription. Transcription factor. Splicing. Rna processing |
title | Involvement of CBF Transcription Factors in Winter Hardiness in Birch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20CBF%20Transcription%20Factors%20in%20Winter%20Hardiness%20in%20Birch&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Welling,%20Annikki&rft.date=2008-07-01&rft.volume=147&rft.issue=3&rft.spage=1199&rft.epage=1211&rft.pages=1199-1211&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.108.117812&rft_dat=%3Cjstor_pubme%3E40065483%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20043760&rft_id=info:pmid/18467468&rft_jstor_id=40065483&rfr_iscdi=true |