Detecting activations in event-related fMRI using analysis of variance
The most common design of a functional MRI (fMRI) experiment is a block design. The use of rapid imaging, however, and carefully designed paradigms makes the separation of cognitive events possible. Such experiments make use of event‐related paradigms, in which a task involving several cognitive pro...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 1999-12, Vol.42 (6), p.1117-1122 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1122 |
---|---|
container_issue | 6 |
container_start_page | 1117 |
container_title | Magnetic resonance in medicine |
container_volume | 42 |
creator | Clare, Stuart Humberstone, Miles Hykin, Jonathan D. Blumhardt, Lance Bowtell, Richard Morris, Peter |
description | The most common design of a functional MRI (fMRI) experiment is a block design. The use of rapid imaging, however, and carefully designed paradigms makes the separation of cognitive events possible. Such experiments make use of event‐related paradigms, in which a task involving several cognitive processes is repeated. In analyzing data from such experiments, existing methods often prove inadequate, because the prediction of the exact shape or timing of the time course is difficult. Here we present an analysis of variance (ANOVA) method for analyzing fMRI data that does not require any assumptions about the shape of the activation time course. Consequently, this method can simultaneously detect brain areas showing a variety of stimulus‐locked time courses in the same experiment. The utility of this technique is demonstrated by the analysis of data from two event‐related paradigms in which regions of activation are detected that correspond to a variety of distinct neural processes, yielding significantly different temporal signal changes. Magn Reson Med 42:1117–1122, 1999. © 1999 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/(SICI)1522-2594(199912)42:6<1117::AID-MRM16>3.0.CO;2-J |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69297726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69297726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5116-b3d2b831b334ee622e73e13ff948c446d432a2cbae2eb17e805cb543c1adcf653</originalsourceid><addsrcrecordid>eNqFkF1r1EAUhgdR7Fr9C5ILkfYi63xlZmeVQkk_TOm6sNbWu8Nk9kSmZpOaya7df2_SLFVQ8OrA4Tkv73kIOWJ0zCjl7w4-Z2l2yBLOY54YecCMMYwfSj5VHxhjejo9zk7i2WLG1JEY03E6f8_jiydk9HjylIyoljQWzMg98iKEW0qpMVo-J3uMJpoZIUbk7ARbdK2vvkW2Gxvb-roKka8i3GDVxg2WtsVlVMwWWbQOD1xly23wIaqLaGMbbyuHL8mzwpYBX-3mPvlydnqVfowv5-dZenwZu4QxFediyfOJYLkQElFxjlogE0Vh5MRJqZZScMtdbpFjzjROaOLyRArH7NIVKhH75O2Qe9fUP9YYWlj54LAsbYX1OoAy3GjNVQdeD6Br6hAaLOCu8SvbbIFR6A0D9Iah1wW9LhgMg-SgoDcM0BmGB8MggEI6Bw4XXfDrXYN1vsLlH7GD0g54swNscLYsms6PD785LqQQ_Sc3A_bTl7j9q93_yv2r27DokuMh2YcW7x-TbfMdlBY6gZtP5_A1ub7SC90di1_aLLIh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69297726</pqid></control><display><type>article</type><title>Detecting activations in event-related fMRI using analysis of variance</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Clare, Stuart ; Humberstone, Miles ; Hykin, Jonathan ; D. Blumhardt, Lance ; Bowtell, Richard ; Morris, Peter</creator><creatorcontrib>Clare, Stuart ; Humberstone, Miles ; Hykin, Jonathan ; D. Blumhardt, Lance ; Bowtell, Richard ; Morris, Peter</creatorcontrib><description>The most common design of a functional MRI (fMRI) experiment is a block design. The use of rapid imaging, however, and carefully designed paradigms makes the separation of cognitive events possible. Such experiments make use of event‐related paradigms, in which a task involving several cognitive processes is repeated. In analyzing data from such experiments, existing methods often prove inadequate, because the prediction of the exact shape or timing of the time course is difficult. Here we present an analysis of variance (ANOVA) method for analyzing fMRI data that does not require any assumptions about the shape of the activation time course. Consequently, this method can simultaneously detect brain areas showing a variety of stimulus‐locked time courses in the same experiment. The utility of this technique is demonstrated by the analysis of data from two event‐related paradigms in which regions of activation are detected that correspond to a variety of distinct neural processes, yielding significantly different temporal signal changes. Magn Reson Med 42:1117–1122, 1999. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/(SICI)1522-2594(199912)42:6<1117::AID-MRM16>3.0.CO;2-J</identifier><identifier>PMID: 10571933</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Analysis of Variance ; ANOVA ; Biological and medical sciences ; Brain - anatomy & histology ; Brain - physiology ; data analysis ; event-related fMRI ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging - methods ; Medical sciences ; Memory, Short-Term - physiology ; Motor Cortex - anatomy & histology ; Motor Cortex - physiology ; Motor Skills - physiology ; Nervous system ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; short-term memorym ; Signal Processing, Computer-Assisted ; Sternberg paradigm</subject><ispartof>Magnetic resonance in medicine, 1999-12, Vol.42 (6), p.1117-1122</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 1999 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5116-b3d2b831b334ee622e73e13ff948c446d432a2cbae2eb17e805cb543c1adcf653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291522-2594%28199912%2942%3A6%3C1117%3A%3AAID-MRM16%3E3.0.CO%3B2-J$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291522-2594%28199912%2942%3A6%3C1117%3A%3AAID-MRM16%3E3.0.CO%3B2-J$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1234335$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10571933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clare, Stuart</creatorcontrib><creatorcontrib>Humberstone, Miles</creatorcontrib><creatorcontrib>Hykin, Jonathan</creatorcontrib><creatorcontrib>D. Blumhardt, Lance</creatorcontrib><creatorcontrib>Bowtell, Richard</creatorcontrib><creatorcontrib>Morris, Peter</creatorcontrib><title>Detecting activations in event-related fMRI using analysis of variance</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>The most common design of a functional MRI (fMRI) experiment is a block design. The use of rapid imaging, however, and carefully designed paradigms makes the separation of cognitive events possible. Such experiments make use of event‐related paradigms, in which a task involving several cognitive processes is repeated. In analyzing data from such experiments, existing methods often prove inadequate, because the prediction of the exact shape or timing of the time course is difficult. Here we present an analysis of variance (ANOVA) method for analyzing fMRI data that does not require any assumptions about the shape of the activation time course. Consequently, this method can simultaneously detect brain areas showing a variety of stimulus‐locked time courses in the same experiment. The utility of this technique is demonstrated by the analysis of data from two event‐related paradigms in which regions of activation are detected that correspond to a variety of distinct neural processes, yielding significantly different temporal signal changes. Magn Reson Med 42:1117–1122, 1999. © 1999 Wiley‐Liss, Inc.</description><subject>Analysis of Variance</subject><subject>ANOVA</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy & histology</subject><subject>Brain - physiology</subject><subject>data analysis</subject><subject>event-related fMRI</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical sciences</subject><subject>Memory, Short-Term - physiology</subject><subject>Motor Cortex - anatomy & histology</subject><subject>Motor Cortex - physiology</subject><subject>Motor Skills - physiology</subject><subject>Nervous system</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>short-term memorym</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sternberg paradigm</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkF1r1EAUhgdR7Fr9C5ILkfYi63xlZmeVQkk_TOm6sNbWu8Nk9kSmZpOaya7df2_SLFVQ8OrA4Tkv73kIOWJ0zCjl7w4-Z2l2yBLOY54YecCMMYwfSj5VHxhjejo9zk7i2WLG1JEY03E6f8_jiydk9HjylIyoljQWzMg98iKEW0qpMVo-J3uMJpoZIUbk7ARbdK2vvkW2Gxvb-roKka8i3GDVxg2WtsVlVMwWWbQOD1xly23wIaqLaGMbbyuHL8mzwpYBX-3mPvlydnqVfowv5-dZenwZu4QxFediyfOJYLkQElFxjlogE0Vh5MRJqZZScMtdbpFjzjROaOLyRArH7NIVKhH75O2Qe9fUP9YYWlj54LAsbYX1OoAy3GjNVQdeD6Br6hAaLOCu8SvbbIFR6A0D9Iah1wW9LhgMg-SgoDcM0BmGB8MggEI6Bw4XXfDrXYN1vsLlH7GD0g54swNscLYsms6PD785LqQQ_Sc3A_bTl7j9q93_yv2r27DokuMh2YcW7x-TbfMdlBY6gZtP5_A1ub7SC90di1_aLLIh</recordid><startdate>199912</startdate><enddate>199912</enddate><creator>Clare, Stuart</creator><creator>Humberstone, Miles</creator><creator>Hykin, Jonathan</creator><creator>D. Blumhardt, Lance</creator><creator>Bowtell, Richard</creator><creator>Morris, Peter</creator><general>John Wiley & Sons, Inc</general><general>Williams & Wilkins</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199912</creationdate><title>Detecting activations in event-related fMRI using analysis of variance</title><author>Clare, Stuart ; Humberstone, Miles ; Hykin, Jonathan ; D. Blumhardt, Lance ; Bowtell, Richard ; Morris, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5116-b3d2b831b334ee622e73e13ff948c446d432a2cbae2eb17e805cb543c1adcf653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Analysis of Variance</topic><topic>ANOVA</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy & histology</topic><topic>Brain - physiology</topic><topic>data analysis</topic><topic>event-related fMRI</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical sciences</topic><topic>Memory, Short-Term - physiology</topic><topic>Motor Cortex - anatomy & histology</topic><topic>Motor Cortex - physiology</topic><topic>Motor Skills - physiology</topic><topic>Nervous system</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>short-term memorym</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sternberg paradigm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clare, Stuart</creatorcontrib><creatorcontrib>Humberstone, Miles</creatorcontrib><creatorcontrib>Hykin, Jonathan</creatorcontrib><creatorcontrib>D. Blumhardt, Lance</creatorcontrib><creatorcontrib>Bowtell, Richard</creatorcontrib><creatorcontrib>Morris, Peter</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clare, Stuart</au><au>Humberstone, Miles</au><au>Hykin, Jonathan</au><au>D. Blumhardt, Lance</au><au>Bowtell, Richard</au><au>Morris, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting activations in event-related fMRI using analysis of variance</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>1999-12</date><risdate>1999</risdate><volume>42</volume><issue>6</issue><spage>1117</spage><epage>1122</epage><pages>1117-1122</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>The most common design of a functional MRI (fMRI) experiment is a block design. The use of rapid imaging, however, and carefully designed paradigms makes the separation of cognitive events possible. Such experiments make use of event‐related paradigms, in which a task involving several cognitive processes is repeated. In analyzing data from such experiments, existing methods often prove inadequate, because the prediction of the exact shape or timing of the time course is difficult. Here we present an analysis of variance (ANOVA) method for analyzing fMRI data that does not require any assumptions about the shape of the activation time course. Consequently, this method can simultaneously detect brain areas showing a variety of stimulus‐locked time courses in the same experiment. The utility of this technique is demonstrated by the analysis of data from two event‐related paradigms in which regions of activation are detected that correspond to a variety of distinct neural processes, yielding significantly different temporal signal changes. Magn Reson Med 42:1117–1122, 1999. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10571933</pmid><doi>10.1002/(SICI)1522-2594(199912)42:6<1117::AID-MRM16>3.0.CO;2-J</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 1999-12, Vol.42 (6), p.1117-1122 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_69297726 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Analysis of Variance ANOVA Biological and medical sciences Brain - anatomy & histology Brain - physiology data analysis event-related fMRI Humans Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - methods Medical sciences Memory, Short-Term - physiology Motor Cortex - anatomy & histology Motor Cortex - physiology Motor Skills - physiology Nervous system Radiodiagnosis. Nmr imagery. Nmr spectrometry short-term memorym Signal Processing, Computer-Assisted Sternberg paradigm |
title | Detecting activations in event-related fMRI using analysis of variance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20activations%20in%20event-related%20fMRI%20using%20analysis%20of%20variance&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Clare,%20Stuart&rft.date=1999-12&rft.volume=42&rft.issue=6&rft.spage=1117&rft.epage=1122&rft.pages=1117-1122&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/(SICI)1522-2594(199912)42:6%3C1117::AID-MRM16%3E3.0.CO;2-J&rft_dat=%3Cproquest_cross%3E69297726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69297726&rft_id=info:pmid/10571933&rfr_iscdi=true |