Edge state magnetism of single layer graphene nanostructures
We study edge state magnetism in graphene nanostructures using a mean field theory of the Hubbard model. We investigate how the magnetism of the zigzag edges of graphene is affected by the presence of other types of terminating edges and defects. By a detailed study of both regular shapes, such as p...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2008-06, Vol.128 (24), p.244717-244717-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244717-7 |
---|---|
container_issue | 24 |
container_start_page | 244717 |
container_title | The Journal of chemical physics |
container_volume | 128 |
creator | Bhowmick, Somnath Shenoy, Vijay B. |
description | We study edge state magnetism in graphene nanostructures using a mean field theory of the Hubbard model. We investigate how the magnetism of the zigzag edges of graphene is affected by the presence of other types of terminating edges and defects. By a detailed study of both regular shapes, such as polygonal nanodots and nanoribbons, and irregular shapes, we conclude that the magnetism in zigzag edges is very robust. Our calculations show that the zigzag edges that are longer than three to four repeat units are always magnetic, irrespective of other edges, regular or irregular. We, therefore, clearly demonstrate that the edge irregularities and defects of the bounding edges of graphene nanostructures do not destroy the edge state magnetism. |
doi_str_mv | 10.1063/1.2943678 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69295503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69295503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-1fa23e32a2ede4d5ee84899ae699917de87fe5167659bcc2b0cf6e24686ba8a23</originalsourceid><addsrcrecordid>eNp10DtPwzAUhmELgWgpDPwBlAmJIcWXxBcJIaGqXKRKLDBbjnMSghKn2M7Qf09KI5iYzvKeb3gQuiR4STBnt2RJVca4kEdoTrBUqeAKH6M5xpSkimM-Q2chfGKMiaDZKZoRyTFhIp-ju3VZQxKiiZB0pnYQm9AlfZWExtUtJK3ZgU9qb7Yf4CBxxvUh-sHGwUM4RyeVaQNcTHeB3h_Xb6vndPP69LJ62KQ2YyqmpDKUAaOGQglZmQPITCplgCuliChBigpywgXPVWEtLbCtONCMS14YOf4u0PVhd-v7rwFC1F0TLLStcdAPQXNFVZ5jNoY3h9D6PgQPld76pjN-pwnWeypN9EQ1tlfT6FB0UP6Vk80Y3B-CYJvRp-nd_2t7Rf2jqH8V2Td7tnj-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69295503</pqid></control><display><type>article</type><title>Edge state magnetism of single layer graphene nanostructures</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Bhowmick, Somnath ; Shenoy, Vijay B.</creator><creatorcontrib>Bhowmick, Somnath ; Shenoy, Vijay B.</creatorcontrib><description>We study edge state magnetism in graphene nanostructures using a mean field theory of the Hubbard model. We investigate how the magnetism of the zigzag edges of graphene is affected by the presence of other types of terminating edges and defects. By a detailed study of both regular shapes, such as polygonal nanodots and nanoribbons, and irregular shapes, we conclude that the magnetism in zigzag edges is very robust. Our calculations show that the zigzag edges that are longer than three to four repeat units are always magnetic, irrespective of other edges, regular or irregular. We, therefore, clearly demonstrate that the edge irregularities and defects of the bounding edges of graphene nanostructures do not destroy the edge state magnetism.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2943678</identifier><identifier>PMID: 18601375</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2008-06, Vol.128 (24), p.244717-244717-7</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-1fa23e32a2ede4d5ee84899ae699917de87fe5167659bcc2b0cf6e24686ba8a23</citedby><cites>FETCH-LOGICAL-c439t-1fa23e32a2ede4d5ee84899ae699917de87fe5167659bcc2b0cf6e24686ba8a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18601375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhowmick, Somnath</creatorcontrib><creatorcontrib>Shenoy, Vijay B.</creatorcontrib><title>Edge state magnetism of single layer graphene nanostructures</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We study edge state magnetism in graphene nanostructures using a mean field theory of the Hubbard model. We investigate how the magnetism of the zigzag edges of graphene is affected by the presence of other types of terminating edges and defects. By a detailed study of both regular shapes, such as polygonal nanodots and nanoribbons, and irregular shapes, we conclude that the magnetism in zigzag edges is very robust. Our calculations show that the zigzag edges that are longer than three to four repeat units are always magnetic, irrespective of other edges, regular or irregular. We, therefore, clearly demonstrate that the edge irregularities and defects of the bounding edges of graphene nanostructures do not destroy the edge state magnetism.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10DtPwzAUhmELgWgpDPwBlAmJIcWXxBcJIaGqXKRKLDBbjnMSghKn2M7Qf09KI5iYzvKeb3gQuiR4STBnt2RJVca4kEdoTrBUqeAKH6M5xpSkimM-Q2chfGKMiaDZKZoRyTFhIp-ju3VZQxKiiZB0pnYQm9AlfZWExtUtJK3ZgU9qb7Yf4CBxxvUh-sHGwUM4RyeVaQNcTHeB3h_Xb6vndPP69LJ62KQ2YyqmpDKUAaOGQglZmQPITCplgCuliChBigpywgXPVWEtLbCtONCMS14YOf4u0PVhd-v7rwFC1F0TLLStcdAPQXNFVZ5jNoY3h9D6PgQPld76pjN-pwnWeypN9EQ1tlfT6FB0UP6Vk80Y3B-CYJvRp-nd_2t7Rf2jqH8V2Td7tnj-</recordid><startdate>20080628</startdate><enddate>20080628</enddate><creator>Bhowmick, Somnath</creator><creator>Shenoy, Vijay B.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080628</creationdate><title>Edge state magnetism of single layer graphene nanostructures</title><author>Bhowmick, Somnath ; Shenoy, Vijay B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-1fa23e32a2ede4d5ee84899ae699917de87fe5167659bcc2b0cf6e24686ba8a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhowmick, Somnath</creatorcontrib><creatorcontrib>Shenoy, Vijay B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhowmick, Somnath</au><au>Shenoy, Vijay B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge state magnetism of single layer graphene nanostructures</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2008-06-28</date><risdate>2008</risdate><volume>128</volume><issue>24</issue><spage>244717</spage><epage>244717-7</epage><pages>244717-244717-7</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We study edge state magnetism in graphene nanostructures using a mean field theory of the Hubbard model. We investigate how the magnetism of the zigzag edges of graphene is affected by the presence of other types of terminating edges and defects. By a detailed study of both regular shapes, such as polygonal nanodots and nanoribbons, and irregular shapes, we conclude that the magnetism in zigzag edges is very robust. Our calculations show that the zigzag edges that are longer than three to four repeat units are always magnetic, irrespective of other edges, regular or irregular. We, therefore, clearly demonstrate that the edge irregularities and defects of the bounding edges of graphene nanostructures do not destroy the edge state magnetism.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>18601375</pmid><doi>10.1063/1.2943678</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2008-06, Vol.128 (24), p.244717-244717-7 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_69295503 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | Edge state magnetism of single layer graphene nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20state%20magnetism%20of%20single%20layer%20graphene%20nanostructures&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bhowmick,%20Somnath&rft.date=2008-06-28&rft.volume=128&rft.issue=24&rft.spage=244717&rft.epage=244717-7&rft.pages=244717-244717-7&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2943678&rft_dat=%3Cproquest_cross%3E69295503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69295503&rft_id=info:pmid/18601375&rfr_iscdi=true |