Edge state magnetism of single layer graphene nanostructures

We study edge state magnetism in graphene nanostructures using a mean field theory of the Hubbard model. We investigate how the magnetism of the zigzag edges of graphene is affected by the presence of other types of terminating edges and defects. By a detailed study of both regular shapes, such as p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2008-06, Vol.128 (24), p.244717-244717-7
Hauptverfasser: Bhowmick, Somnath, Shenoy, Vijay B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244717-7
container_issue 24
container_start_page 244717
container_title The Journal of chemical physics
container_volume 128
creator Bhowmick, Somnath
Shenoy, Vijay B.
description We study edge state magnetism in graphene nanostructures using a mean field theory of the Hubbard model. We investigate how the magnetism of the zigzag edges of graphene is affected by the presence of other types of terminating edges and defects. By a detailed study of both regular shapes, such as polygonal nanodots and nanoribbons, and irregular shapes, we conclude that the magnetism in zigzag edges is very robust. Our calculations show that the zigzag edges that are longer than three to four repeat units are always magnetic, irrespective of other edges, regular or irregular. We, therefore, clearly demonstrate that the edge irregularities and defects of the bounding edges of graphene nanostructures do not destroy the edge state magnetism.
doi_str_mv 10.1063/1.2943678
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69295503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69295503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-1fa23e32a2ede4d5ee84899ae699917de87fe5167659bcc2b0cf6e24686ba8a23</originalsourceid><addsrcrecordid>eNp10DtPwzAUhmELgWgpDPwBlAmJIcWXxBcJIaGqXKRKLDBbjnMSghKn2M7Qf09KI5iYzvKeb3gQuiR4STBnt2RJVca4kEdoTrBUqeAKH6M5xpSkimM-Q2chfGKMiaDZKZoRyTFhIp-ju3VZQxKiiZB0pnYQm9AlfZWExtUtJK3ZgU9qb7Yf4CBxxvUh-sHGwUM4RyeVaQNcTHeB3h_Xb6vndPP69LJ62KQ2YyqmpDKUAaOGQglZmQPITCplgCuliChBigpywgXPVWEtLbCtONCMS14YOf4u0PVhd-v7rwFC1F0TLLStcdAPQXNFVZ5jNoY3h9D6PgQPld76pjN-pwnWeypN9EQ1tlfT6FB0UP6Vk80Y3B-CYJvRp-nd_2t7Rf2jqH8V2Td7tnj-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69295503</pqid></control><display><type>article</type><title>Edge state magnetism of single layer graphene nanostructures</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Bhowmick, Somnath ; Shenoy, Vijay B.</creator><creatorcontrib>Bhowmick, Somnath ; Shenoy, Vijay B.</creatorcontrib><description>We study edge state magnetism in graphene nanostructures using a mean field theory of the Hubbard model. We investigate how the magnetism of the zigzag edges of graphene is affected by the presence of other types of terminating edges and defects. By a detailed study of both regular shapes, such as polygonal nanodots and nanoribbons, and irregular shapes, we conclude that the magnetism in zigzag edges is very robust. Our calculations show that the zigzag edges that are longer than three to four repeat units are always magnetic, irrespective of other edges, regular or irregular. We, therefore, clearly demonstrate that the edge irregularities and defects of the bounding edges of graphene nanostructures do not destroy the edge state magnetism.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2943678</identifier><identifier>PMID: 18601375</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2008-06, Vol.128 (24), p.244717-244717-7</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-1fa23e32a2ede4d5ee84899ae699917de87fe5167659bcc2b0cf6e24686ba8a23</citedby><cites>FETCH-LOGICAL-c439t-1fa23e32a2ede4d5ee84899ae699917de87fe5167659bcc2b0cf6e24686ba8a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18601375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhowmick, Somnath</creatorcontrib><creatorcontrib>Shenoy, Vijay B.</creatorcontrib><title>Edge state magnetism of single layer graphene nanostructures</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We study edge state magnetism in graphene nanostructures using a mean field theory of the Hubbard model. We investigate how the magnetism of the zigzag edges of graphene is affected by the presence of other types of terminating edges and defects. By a detailed study of both regular shapes, such as polygonal nanodots and nanoribbons, and irregular shapes, we conclude that the magnetism in zigzag edges is very robust. Our calculations show that the zigzag edges that are longer than three to four repeat units are always magnetic, irrespective of other edges, regular or irregular. We, therefore, clearly demonstrate that the edge irregularities and defects of the bounding edges of graphene nanostructures do not destroy the edge state magnetism.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10DtPwzAUhmELgWgpDPwBlAmJIcWXxBcJIaGqXKRKLDBbjnMSghKn2M7Qf09KI5iYzvKeb3gQuiR4STBnt2RJVca4kEdoTrBUqeAKH6M5xpSkimM-Q2chfGKMiaDZKZoRyTFhIp-ju3VZQxKiiZB0pnYQm9AlfZWExtUtJK3ZgU9qb7Yf4CBxxvUh-sHGwUM4RyeVaQNcTHeB3h_Xb6vndPP69LJ62KQ2YyqmpDKUAaOGQglZmQPITCplgCuliChBigpywgXPVWEtLbCtONCMS14YOf4u0PVhd-v7rwFC1F0TLLStcdAPQXNFVZ5jNoY3h9D6PgQPld76pjN-pwnWeypN9EQ1tlfT6FB0UP6Vk80Y3B-CYJvRp-nd_2t7Rf2jqH8V2Td7tnj-</recordid><startdate>20080628</startdate><enddate>20080628</enddate><creator>Bhowmick, Somnath</creator><creator>Shenoy, Vijay B.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080628</creationdate><title>Edge state magnetism of single layer graphene nanostructures</title><author>Bhowmick, Somnath ; Shenoy, Vijay B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-1fa23e32a2ede4d5ee84899ae699917de87fe5167659bcc2b0cf6e24686ba8a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhowmick, Somnath</creatorcontrib><creatorcontrib>Shenoy, Vijay B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhowmick, Somnath</au><au>Shenoy, Vijay B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge state magnetism of single layer graphene nanostructures</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2008-06-28</date><risdate>2008</risdate><volume>128</volume><issue>24</issue><spage>244717</spage><epage>244717-7</epage><pages>244717-244717-7</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We study edge state magnetism in graphene nanostructures using a mean field theory of the Hubbard model. We investigate how the magnetism of the zigzag edges of graphene is affected by the presence of other types of terminating edges and defects. By a detailed study of both regular shapes, such as polygonal nanodots and nanoribbons, and irregular shapes, we conclude that the magnetism in zigzag edges is very robust. Our calculations show that the zigzag edges that are longer than three to four repeat units are always magnetic, irrespective of other edges, regular or irregular. We, therefore, clearly demonstrate that the edge irregularities and defects of the bounding edges of graphene nanostructures do not destroy the edge state magnetism.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>18601375</pmid><doi>10.1063/1.2943678</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2008-06, Vol.128 (24), p.244717-244717-7
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_69295503
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Edge state magnetism of single layer graphene nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20state%20magnetism%20of%20single%20layer%20graphene%20nanostructures&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bhowmick,%20Somnath&rft.date=2008-06-28&rft.volume=128&rft.issue=24&rft.spage=244717&rft.epage=244717-7&rft.pages=244717-244717-7&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2943678&rft_dat=%3Cproquest_cross%3E69295503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69295503&rft_id=info:pmid/18601375&rfr_iscdi=true