O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry
A recently developed method to rapidly quantify the elemental composition of bulk organic aerosols (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is improved and applied to ambient measurements. Atomic oxygen-to-carbon (O/C) ratios characterize the oxidation state...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2008-06, Vol.42 (12), p.4478-4485 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4485 |
---|---|
container_issue | 12 |
container_start_page | 4478 |
container_title | Environmental science & technology |
container_volume | 42 |
creator | Aiken, Allison C DeCarlo, Peter F Kroll, Jesse H Worsnop, Douglas R Huffman, J. Alex Docherty, Kenneth S Ulbrich, Ingrid M Mohr, Claudia Kimmel, Joel R Sueper, Donna Sun, Yele Zhang, Qi Trimborn, Achim Northway, Megan Ziemann, Paul J Canagaratna, Manjula R Onasch, Timothy B Alfarra, M. Rami Prevot, Andre S. H Dommen, Josef Duplissy, Jonathan Metzger, Axel Baltensperger, Urs Jimenez, Jose L |
description | A recently developed method to rapidly quantify the elemental composition of bulk organic aerosols (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is improved and applied to ambient measurements. Atomic oxygen-to-carbon (O/C) ratios characterize the oxidation state of OA, and O/C from ambient urban OA ranges from 0.2 to 0.8 with a diurnal cycle that decreases with primary emissions and increases because of photochemical processing and secondary OA (SOA) production. Regional O/C approaches ∼0.9. The hydrogen-to-carbon (H/C, 1.4–1.9) urban diurnal profile increases with primary OA (POA) as does the nitrogen-to-carbon (N/C, ∼0.02). Ambient organic-mass-to-organic-carbon ratios (OM/OC) are directly quantified and correlate well with O/C (R 2 = 0.997) for ambient OA because of low N/C. Ambient O/C and OM/OC have values consistent with those recently reported from other techniques. Positive matrix factorization applied to ambient OA identifies factors with distinct O/C and OM/OC trends. The highest O/C and OM/OC (1.0 and 2.5, respectively) are observed for aged ambient oxygenated OA, significantly exceeding values for traditional chamber SOA, while laboratory-produced primary biomass burning OA (BBOA) is similar to ambient BBOA, O/C of 0.3–0.4. Hydrocarbon-like OA (HOA), a surrogate for urban combustion POA, has the lowest O/C (0.06–0.10), similar to vehicle exhaust. An approximation for predicting O/C from unit mass resolution data is also presented. |
doi_str_mv | 10.1021/es703009q |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69294463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69294463</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-1b68dbd1a8a20edc5011ca8f85731940e9f13b83ad8084e8faa8207a51b373333</originalsourceid><addsrcrecordid>eNqF0dFu0zAUBmALMbEyuOAFkIU0JCRCj-04cS5LxTakVSlrkbizHMfZPJK4sxPBXoDnxltLK8EFvrHl8-mXjw9Crwh8IEDJ1IQcGEBx9wRNCKeQcMHJUzQBICwpWPbtGD0P4RYAKAPxDB0TkQHneTpBv8rpHKu-xuViWs7xlRqsC9g1eOltp_z9e7wy2vX14_HBzbrKmn7Apb9WvdV4ZrwLrg34hx1u8IW9vkmuTLwYY1CP17YziWuSszYWhj8YL1QIeLUxevCuM4O_f4GOGtUG83K3n6CvZ5_W84vksjz_PJ9dJiplxZCQKhN1VRMlFAVTaw6EaCUawXNGihRM0RBWCaZqASI1olFKUMgVJxXLWVwn6O02d-Pd3WjCIDsbtGlb1Rs3BpkVtEjT7P-QgqBcFGmEb_6Ct270fWxCxs8mLCMEInq3RTr2H7xp5Gb7vZKAfBih3I8w2te7wLHqTH2Qu5lFcLoDKmjVNl712oa9o5DSnGV5dMnW2TCYn_u68t9lrOZcrpcrufy4WH2BcyrXh1ylw6GJfx_4GxpqvQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230136110</pqid></control><display><type>article</type><title>O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Aiken, Allison C ; DeCarlo, Peter F ; Kroll, Jesse H ; Worsnop, Douglas R ; Huffman, J. Alex ; Docherty, Kenneth S ; Ulbrich, Ingrid M ; Mohr, Claudia ; Kimmel, Joel R ; Sueper, Donna ; Sun, Yele ; Zhang, Qi ; Trimborn, Achim ; Northway, Megan ; Ziemann, Paul J ; Canagaratna, Manjula R ; Onasch, Timothy B ; Alfarra, M. Rami ; Prevot, Andre S. H ; Dommen, Josef ; Duplissy, Jonathan ; Metzger, Axel ; Baltensperger, Urs ; Jimenez, Jose L</creator><creatorcontrib>Aiken, Allison C ; DeCarlo, Peter F ; Kroll, Jesse H ; Worsnop, Douglas R ; Huffman, J. Alex ; Docherty, Kenneth S ; Ulbrich, Ingrid M ; Mohr, Claudia ; Kimmel, Joel R ; Sueper, Donna ; Sun, Yele ; Zhang, Qi ; Trimborn, Achim ; Northway, Megan ; Ziemann, Paul J ; Canagaratna, Manjula R ; Onasch, Timothy B ; Alfarra, M. Rami ; Prevot, Andre S. H ; Dommen, Josef ; Duplissy, Jonathan ; Metzger, Axel ; Baltensperger, Urs ; Jimenez, Jose L</creatorcontrib><description>A recently developed method to rapidly quantify the elemental composition of bulk organic aerosols (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is improved and applied to ambient measurements. Atomic oxygen-to-carbon (O/C) ratios characterize the oxidation state of OA, and O/C from ambient urban OA ranges from 0.2 to 0.8 with a diurnal cycle that decreases with primary emissions and increases because of photochemical processing and secondary OA (SOA) production. Regional O/C approaches ∼0.9. The hydrogen-to-carbon (H/C, 1.4–1.9) urban diurnal profile increases with primary OA (POA) as does the nitrogen-to-carbon (N/C, ∼0.02). Ambient organic-mass-to-organic-carbon ratios (OM/OC) are directly quantified and correlate well with O/C (R 2 = 0.997) for ambient OA because of low N/C. Ambient O/C and OM/OC have values consistent with those recently reported from other techniques. Positive matrix factorization applied to ambient OA identifies factors with distinct O/C and OM/OC trends. The highest O/C and OM/OC (1.0 and 2.5, respectively) are observed for aged ambient oxygenated OA, significantly exceeding values for traditional chamber SOA, while laboratory-produced primary biomass burning OA (BBOA) is similar to ambient BBOA, O/C of 0.3–0.4. Hydrocarbon-like OA (HOA), a surrogate for urban combustion POA, has the lowest O/C (0.06–0.10), similar to vehicle exhaust. An approximation for predicting O/C from unit mass resolution data is also presented.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es703009q</identifier><identifier>PMID: 18605574</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Aerosols ; Aerosols - analysis ; Applied sciences ; Calibration ; Carbon ; Emissions ; Environmental Measurements Methods ; Exact sciences and technology ; Hydrocarbons ; Ions ; Mass spectrometry ; Mass Spectrometry - methods ; Oxidation ; Poa ; Pollution</subject><ispartof>Environmental science & technology, 2008-06, Vol.42 (12), p.4478-4485</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society Jun 15, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-1b68dbd1a8a20edc5011ca8f85731940e9f13b83ad8084e8faa8207a51b373333</citedby><cites>FETCH-LOGICAL-a439t-1b68dbd1a8a20edc5011ca8f85731940e9f13b83ad8084e8faa8207a51b373333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es703009q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es703009q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20427367$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18605574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aiken, Allison C</creatorcontrib><creatorcontrib>DeCarlo, Peter F</creatorcontrib><creatorcontrib>Kroll, Jesse H</creatorcontrib><creatorcontrib>Worsnop, Douglas R</creatorcontrib><creatorcontrib>Huffman, J. Alex</creatorcontrib><creatorcontrib>Docherty, Kenneth S</creatorcontrib><creatorcontrib>Ulbrich, Ingrid M</creatorcontrib><creatorcontrib>Mohr, Claudia</creatorcontrib><creatorcontrib>Kimmel, Joel R</creatorcontrib><creatorcontrib>Sueper, Donna</creatorcontrib><creatorcontrib>Sun, Yele</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Trimborn, Achim</creatorcontrib><creatorcontrib>Northway, Megan</creatorcontrib><creatorcontrib>Ziemann, Paul J</creatorcontrib><creatorcontrib>Canagaratna, Manjula R</creatorcontrib><creatorcontrib>Onasch, Timothy B</creatorcontrib><creatorcontrib>Alfarra, M. Rami</creatorcontrib><creatorcontrib>Prevot, Andre S. H</creatorcontrib><creatorcontrib>Dommen, Josef</creatorcontrib><creatorcontrib>Duplissy, Jonathan</creatorcontrib><creatorcontrib>Metzger, Axel</creatorcontrib><creatorcontrib>Baltensperger, Urs</creatorcontrib><creatorcontrib>Jimenez, Jose L</creatorcontrib><title>O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A recently developed method to rapidly quantify the elemental composition of bulk organic aerosols (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is improved and applied to ambient measurements. Atomic oxygen-to-carbon (O/C) ratios characterize the oxidation state of OA, and O/C from ambient urban OA ranges from 0.2 to 0.8 with a diurnal cycle that decreases with primary emissions and increases because of photochemical processing and secondary OA (SOA) production. Regional O/C approaches ∼0.9. The hydrogen-to-carbon (H/C, 1.4–1.9) urban diurnal profile increases with primary OA (POA) as does the nitrogen-to-carbon (N/C, ∼0.02). Ambient organic-mass-to-organic-carbon ratios (OM/OC) are directly quantified and correlate well with O/C (R 2 = 0.997) for ambient OA because of low N/C. Ambient O/C and OM/OC have values consistent with those recently reported from other techniques. Positive matrix factorization applied to ambient OA identifies factors with distinct O/C and OM/OC trends. The highest O/C and OM/OC (1.0 and 2.5, respectively) are observed for aged ambient oxygenated OA, significantly exceeding values for traditional chamber SOA, while laboratory-produced primary biomass burning OA (BBOA) is similar to ambient BBOA, O/C of 0.3–0.4. Hydrocarbon-like OA (HOA), a surrogate for urban combustion POA, has the lowest O/C (0.06–0.10), similar to vehicle exhaust. An approximation for predicting O/C from unit mass resolution data is also presented.</description><subject>Aerosols</subject><subject>Aerosols - analysis</subject><subject>Applied sciences</subject><subject>Calibration</subject><subject>Carbon</subject><subject>Emissions</subject><subject>Environmental Measurements Methods</subject><subject>Exact sciences and technology</subject><subject>Hydrocarbons</subject><subject>Ions</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Oxidation</subject><subject>Poa</subject><subject>Pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0dFu0zAUBmALMbEyuOAFkIU0JCRCj-04cS5LxTakVSlrkbizHMfZPJK4sxPBXoDnxltLK8EFvrHl8-mXjw9Crwh8IEDJ1IQcGEBx9wRNCKeQcMHJUzQBICwpWPbtGD0P4RYAKAPxDB0TkQHneTpBv8rpHKu-xuViWs7xlRqsC9g1eOltp_z9e7wy2vX14_HBzbrKmn7Apb9WvdV4ZrwLrg34hx1u8IW9vkmuTLwYY1CP17YziWuSszYWhj8YL1QIeLUxevCuM4O_f4GOGtUG83K3n6CvZ5_W84vksjz_PJ9dJiplxZCQKhN1VRMlFAVTaw6EaCUawXNGihRM0RBWCaZqASI1olFKUMgVJxXLWVwn6O02d-Pd3WjCIDsbtGlb1Rs3BpkVtEjT7P-QgqBcFGmEb_6Ct270fWxCxs8mLCMEInq3RTr2H7xp5Gb7vZKAfBih3I8w2te7wLHqTH2Qu5lFcLoDKmjVNl712oa9o5DSnGV5dMnW2TCYn_u68t9lrOZcrpcrufy4WH2BcyrXh1ylw6GJfx_4GxpqvQs</recordid><startdate>20080615</startdate><enddate>20080615</enddate><creator>Aiken, Allison C</creator><creator>DeCarlo, Peter F</creator><creator>Kroll, Jesse H</creator><creator>Worsnop, Douglas R</creator><creator>Huffman, J. Alex</creator><creator>Docherty, Kenneth S</creator><creator>Ulbrich, Ingrid M</creator><creator>Mohr, Claudia</creator><creator>Kimmel, Joel R</creator><creator>Sueper, Donna</creator><creator>Sun, Yele</creator><creator>Zhang, Qi</creator><creator>Trimborn, Achim</creator><creator>Northway, Megan</creator><creator>Ziemann, Paul J</creator><creator>Canagaratna, Manjula R</creator><creator>Onasch, Timothy B</creator><creator>Alfarra, M. Rami</creator><creator>Prevot, Andre S. H</creator><creator>Dommen, Josef</creator><creator>Duplissy, Jonathan</creator><creator>Metzger, Axel</creator><creator>Baltensperger, Urs</creator><creator>Jimenez, Jose L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TG</scope><scope>7TV</scope><scope>KL.</scope><scope>7X8</scope></search><sort><creationdate>20080615</creationdate><title>O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry</title><author>Aiken, Allison C ; DeCarlo, Peter F ; Kroll, Jesse H ; Worsnop, Douglas R ; Huffman, J. Alex ; Docherty, Kenneth S ; Ulbrich, Ingrid M ; Mohr, Claudia ; Kimmel, Joel R ; Sueper, Donna ; Sun, Yele ; Zhang, Qi ; Trimborn, Achim ; Northway, Megan ; Ziemann, Paul J ; Canagaratna, Manjula R ; Onasch, Timothy B ; Alfarra, M. Rami ; Prevot, Andre S. H ; Dommen, Josef ; Duplissy, Jonathan ; Metzger, Axel ; Baltensperger, Urs ; Jimenez, Jose L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-1b68dbd1a8a20edc5011ca8f85731940e9f13b83ad8084e8faa8207a51b373333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerosols</topic><topic>Aerosols - analysis</topic><topic>Applied sciences</topic><topic>Calibration</topic><topic>Carbon</topic><topic>Emissions</topic><topic>Environmental Measurements Methods</topic><topic>Exact sciences and technology</topic><topic>Hydrocarbons</topic><topic>Ions</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Oxidation</topic><topic>Poa</topic><topic>Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aiken, Allison C</creatorcontrib><creatorcontrib>DeCarlo, Peter F</creatorcontrib><creatorcontrib>Kroll, Jesse H</creatorcontrib><creatorcontrib>Worsnop, Douglas R</creatorcontrib><creatorcontrib>Huffman, J. Alex</creatorcontrib><creatorcontrib>Docherty, Kenneth S</creatorcontrib><creatorcontrib>Ulbrich, Ingrid M</creatorcontrib><creatorcontrib>Mohr, Claudia</creatorcontrib><creatorcontrib>Kimmel, Joel R</creatorcontrib><creatorcontrib>Sueper, Donna</creatorcontrib><creatorcontrib>Sun, Yele</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Trimborn, Achim</creatorcontrib><creatorcontrib>Northway, Megan</creatorcontrib><creatorcontrib>Ziemann, Paul J</creatorcontrib><creatorcontrib>Canagaratna, Manjula R</creatorcontrib><creatorcontrib>Onasch, Timothy B</creatorcontrib><creatorcontrib>Alfarra, M. Rami</creatorcontrib><creatorcontrib>Prevot, Andre S. H</creatorcontrib><creatorcontrib>Dommen, Josef</creatorcontrib><creatorcontrib>Duplissy, Jonathan</creatorcontrib><creatorcontrib>Metzger, Axel</creatorcontrib><creatorcontrib>Baltensperger, Urs</creatorcontrib><creatorcontrib>Jimenez, Jose L</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aiken, Allison C</au><au>DeCarlo, Peter F</au><au>Kroll, Jesse H</au><au>Worsnop, Douglas R</au><au>Huffman, J. Alex</au><au>Docherty, Kenneth S</au><au>Ulbrich, Ingrid M</au><au>Mohr, Claudia</au><au>Kimmel, Joel R</au><au>Sueper, Donna</au><au>Sun, Yele</au><au>Zhang, Qi</au><au>Trimborn, Achim</au><au>Northway, Megan</au><au>Ziemann, Paul J</au><au>Canagaratna, Manjula R</au><au>Onasch, Timothy B</au><au>Alfarra, M. Rami</au><au>Prevot, Andre S. H</au><au>Dommen, Josef</au><au>Duplissy, Jonathan</au><au>Metzger, Axel</au><au>Baltensperger, Urs</au><au>Jimenez, Jose L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2008-06-15</date><risdate>2008</risdate><volume>42</volume><issue>12</issue><spage>4478</spage><epage>4485</epage><pages>4478-4485</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>A recently developed method to rapidly quantify the elemental composition of bulk organic aerosols (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is improved and applied to ambient measurements. Atomic oxygen-to-carbon (O/C) ratios characterize the oxidation state of OA, and O/C from ambient urban OA ranges from 0.2 to 0.8 with a diurnal cycle that decreases with primary emissions and increases because of photochemical processing and secondary OA (SOA) production. Regional O/C approaches ∼0.9. The hydrogen-to-carbon (H/C, 1.4–1.9) urban diurnal profile increases with primary OA (POA) as does the nitrogen-to-carbon (N/C, ∼0.02). Ambient organic-mass-to-organic-carbon ratios (OM/OC) are directly quantified and correlate well with O/C (R 2 = 0.997) for ambient OA because of low N/C. Ambient O/C and OM/OC have values consistent with those recently reported from other techniques. Positive matrix factorization applied to ambient OA identifies factors with distinct O/C and OM/OC trends. The highest O/C and OM/OC (1.0 and 2.5, respectively) are observed for aged ambient oxygenated OA, significantly exceeding values for traditional chamber SOA, while laboratory-produced primary biomass burning OA (BBOA) is similar to ambient BBOA, O/C of 0.3–0.4. Hydrocarbon-like OA (HOA), a surrogate for urban combustion POA, has the lowest O/C (0.06–0.10), similar to vehicle exhaust. An approximation for predicting O/C from unit mass resolution data is also presented.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18605574</pmid><doi>10.1021/es703009q</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2008-06, Vol.42 (12), p.4478-4485 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_69294463 |
source | MEDLINE; American Chemical Society Publications |
subjects | Aerosols Aerosols - analysis Applied sciences Calibration Carbon Emissions Environmental Measurements Methods Exact sciences and technology Hydrocarbons Ions Mass spectrometry Mass Spectrometry - methods Oxidation Poa Pollution |
title | O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=O/C%20and%20OM/OC%20Ratios%20of%20Primary,%20Secondary,%20and%20Ambient%20Organic%20Aerosols%20with%20High-Resolution%20Time-of-Flight%20Aerosol%20Mass%20Spectrometry&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Aiken,%20Allison%20C&rft.date=2008-06-15&rft.volume=42&rft.issue=12&rft.spage=4478&rft.epage=4485&rft.pages=4478-4485&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es703009q&rft_dat=%3Cproquest_cross%3E69294463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230136110&rft_id=info:pmid/18605574&rfr_iscdi=true |