Adaptive fuzzy segmentation of magnetic resonance images

An algorithm is presented for the fuzzy segmentation of two-dimensional (2-D) and three-dimensional (3-D) multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the 2-D adaptive fuzzy C-mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 1999-09, Vol.18 (9), p.737-752
Hauptverfasser: Pham, D.L., Prince, J.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 752
container_issue 9
container_start_page 737
container_title IEEE transactions on medical imaging
container_volume 18
creator Pham, D.L.
Prince, J.L.
description An algorithm is presented for the fuzzy segmentation of two-dimensional (2-D) and three-dimensional (3-D) multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the 2-D adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous work by the authors. This algorithm models the intensity inhomogeneities as a gain field that causes image intensities to smoothly and slowly vary through the image space. It iteratively adapts to the intensity inhomogeneities and is completely automated. In this paper, the authors fully generalize 2-D AFCM to three-dimensional (3-D) multispectral images. Because of the potential size of 3-D image data, they also describe a new faster multigrid-based algorithm for its implementation. They show, using simulated MR data, that 3-D AFCM yields lower error rates than both the standard fuzzy C-means (FCM) algorithm and two other competing methods, when segmenting corrupted images. Its efficacy is further demonstrated using real 3-D scalar and multispectral MR brain images.
doi_str_mv 10.1109/42.802752
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_69291691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>802752</ieee_id><sourcerecordid>437902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-39ddbcba686a945ff881d25033b731e2a5248da65ebf7c1837adfc9f991f1af23</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgipvTg1cP0oMoHjrz8qvJcQx_wcCLgreSpi-jsrWz6YTtrzfSoZ70FHj58B58v4ScAh0DUHMj2FhTlkm2R4YgpU6ZFK_7ZBhnOqVUsQE5CuGNUhCSmkMyACoz4JkZEj0p7aqrPjDx6-12kwScL7HubFc1ddL4ZGnnNXaVS1oMTW1rh0kVZxiOyYG3i4Anu3dEXu5un6cP6ezp_nE6maVOMN6l3JRl4QqrtLJGSO-1hpJJynmRcUBmJRO6tEpi4TMHmme29M54Y8CD9YyPyFW_d9U272sMXb6sgsPFwtbYrENugCpBM8WjvPxTKsMMKAP_QqaZAiXV_zBmKBRkEV730LVNCC36fNXGmNpNDjT_qigXLO8rivZ8t3RdLLH8JftOIrjYARucXfg2pl6FH8fAaEMjO-tZhYjfv7sjn9nPnzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21374617</pqid></control><display><type>article</type><title>Adaptive fuzzy segmentation of magnetic resonance images</title><source>IEEE Electronic Library (IEL)</source><creator>Pham, D.L. ; Prince, J.L.</creator><creatorcontrib>Pham, D.L. ; Prince, J.L.</creatorcontrib><description>An algorithm is presented for the fuzzy segmentation of two-dimensional (2-D) and three-dimensional (3-D) multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the 2-D adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous work by the authors. This algorithm models the intensity inhomogeneities as a gain field that causes image intensities to smoothly and slowly vary through the image space. It iteratively adapts to the intensity inhomogeneities and is completely automated. In this paper, the authors fully generalize 2-D AFCM to three-dimensional (3-D) multispectral images. Because of the potential size of 3-D image data, they also describe a new faster multigrid-based algorithm for its implementation. They show, using simulated MR data, that 3-D AFCM yields lower error rates than both the standard fuzzy C-means (FCM) algorithm and two other competing methods, when segmenting corrupted images. Its efficacy is further demonstrated using real 3-D scalar and multispectral MR brain images.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.802752</identifier><identifier>PMID: 10571379</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Biological and medical sciences ; Brain - anatomy &amp; histology ; Computer Simulation ; Filtering ; Fuzzy Logic ; Fuzzy sets ; Humans ; Image analysis ; Image Processing, Computer-Assisted ; Image segmentation ; Investigative techniques, diagnostic techniques (general aspects) ; Iterative algorithms ; Magnetic noise ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical sciences ; Miscellaneous. Technology ; Nonuniform electric fields ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Surface fitting ; Two dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 1999-09, Vol.18 (9), p.737-752</ispartof><rights>2000 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-39ddbcba686a945ff881d25033b731e2a5248da65ebf7c1837adfc9f991f1af23</citedby><cites>FETCH-LOGICAL-c423t-39ddbcba686a945ff881d25033b731e2a5248da65ebf7c1837adfc9f991f1af23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/802752$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/802752$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1219890$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10571379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, D.L.</creatorcontrib><creatorcontrib>Prince, J.L.</creatorcontrib><title>Adaptive fuzzy segmentation of magnetic resonance images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>An algorithm is presented for the fuzzy segmentation of two-dimensional (2-D) and three-dimensional (3-D) multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the 2-D adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous work by the authors. This algorithm models the intensity inhomogeneities as a gain field that causes image intensities to smoothly and slowly vary through the image space. It iteratively adapts to the intensity inhomogeneities and is completely automated. In this paper, the authors fully generalize 2-D AFCM to three-dimensional (3-D) multispectral images. Because of the potential size of 3-D image data, they also describe a new faster multigrid-based algorithm for its implementation. They show, using simulated MR data, that 3-D AFCM yields lower error rates than both the standard fuzzy C-means (FCM) algorithm and two other competing methods, when segmenting corrupted images. Its efficacy is further demonstrated using real 3-D scalar and multispectral MR brain images.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy &amp; histology</subject><subject>Computer Simulation</subject><subject>Filtering</subject><subject>Fuzzy Logic</subject><subject>Fuzzy sets</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Iterative algorithms</subject><subject>Magnetic noise</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Nonuniform electric fields</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Surface fitting</subject><subject>Two dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9LwzAUB_AgipvTg1cP0oMoHjrz8qvJcQx_wcCLgreSpi-jsrWz6YTtrzfSoZ70FHj58B58v4ScAh0DUHMj2FhTlkm2R4YgpU6ZFK_7ZBhnOqVUsQE5CuGNUhCSmkMyACoz4JkZEj0p7aqrPjDx6-12kwScL7HubFc1ddL4ZGnnNXaVS1oMTW1rh0kVZxiOyYG3i4Anu3dEXu5un6cP6ezp_nE6maVOMN6l3JRl4QqrtLJGSO-1hpJJynmRcUBmJRO6tEpi4TMHmme29M54Y8CD9YyPyFW_d9U272sMXb6sgsPFwtbYrENugCpBM8WjvPxTKsMMKAP_QqaZAiXV_zBmKBRkEV730LVNCC36fNXGmNpNDjT_qigXLO8rivZ8t3RdLLH8JftOIrjYARucXfg2pl6FH8fAaEMjO-tZhYjfv7sjn9nPnzY</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>Pham, D.L.</creator><creator>Prince, J.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>19990901</creationdate><title>Adaptive fuzzy segmentation of magnetic resonance images</title><author>Pham, D.L. ; Prince, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-39ddbcba686a945ff881d25033b731e2a5248da65ebf7c1837adfc9f991f1af23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy &amp; histology</topic><topic>Computer Simulation</topic><topic>Filtering</topic><topic>Fuzzy Logic</topic><topic>Fuzzy sets</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Iterative algorithms</topic><topic>Magnetic noise</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Nonuniform electric fields</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Surface fitting</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Pham, D.L.</creatorcontrib><creatorcontrib>Prince, J.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pham, D.L.</au><au>Prince, J.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive fuzzy segmentation of magnetic resonance images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>1999-09-01</date><risdate>1999</risdate><volume>18</volume><issue>9</issue><spage>737</spage><epage>752</epage><pages>737-752</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>An algorithm is presented for the fuzzy segmentation of two-dimensional (2-D) and three-dimensional (3-D) multispectral magnetic resonance (MR) images that have been corrupted by intensity inhomogeneities, also known as shading artifacts. The algorithm is an extension of the 2-D adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous work by the authors. This algorithm models the intensity inhomogeneities as a gain field that causes image intensities to smoothly and slowly vary through the image space. It iteratively adapts to the intensity inhomogeneities and is completely automated. In this paper, the authors fully generalize 2-D AFCM to three-dimensional (3-D) multispectral images. Because of the potential size of 3-D image data, they also describe a new faster multigrid-based algorithm for its implementation. They show, using simulated MR data, that 3-D AFCM yields lower error rates than both the standard fuzzy C-means (FCM) algorithm and two other competing methods, when segmenting corrupted images. Its efficacy is further demonstrated using real 3-D scalar and multispectral MR brain images.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>10571379</pmid><doi>10.1109/42.802752</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 1999-09, Vol.18 (9), p.737-752
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_69291691
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Algorithms
Biological and medical sciences
Brain - anatomy & histology
Computer Simulation
Filtering
Fuzzy Logic
Fuzzy sets
Humans
Image analysis
Image Processing, Computer-Assisted
Image segmentation
Investigative techniques, diagnostic techniques (general aspects)
Iterative algorithms
Magnetic noise
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical sciences
Miscellaneous. Technology
Nonuniform electric fields
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Surface fitting
Two dimensional displays
title Adaptive fuzzy segmentation of magnetic resonance images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T11%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20fuzzy%20segmentation%20of%20magnetic%20resonance%20images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Pham,%20D.L.&rft.date=1999-09-01&rft.volume=18&rft.issue=9&rft.spage=737&rft.epage=752&rft.pages=737-752&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.802752&rft_dat=%3Cproquest_RIE%3E437902%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21374617&rft_id=info:pmid/10571379&rft_ieee_id=802752&rfr_iscdi=true