A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills

An early carbon reservoir The recent discovery of diamond and graphite inclusions in zircon grains formed over 4 billion years ago in the Jack Hills meta-sedimentary belt in Western Australia has given geologists a glimpse of Earth's earliest known carbon reservoir. New ion microprobe analyses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2008-07, Vol.454 (7200), p.92-95
Hauptverfasser: Nemchin, Alexander A., Whitehouse, Martin J., Menneken, Martina, Geisler, Thorsten, Pidgeon, Robert T., Wilde, Simon A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 7200
container_start_page 92
container_title Nature (London)
container_volume 454
creator Nemchin, Alexander A.
Whitehouse, Martin J.
Menneken, Martina
Geisler, Thorsten
Pidgeon, Robert T.
Wilde, Simon A.
description An early carbon reservoir The recent discovery of diamond and graphite inclusions in zircon grains formed over 4 billion years ago in the Jack Hills meta-sedimentary belt in Western Australia has given geologists a glimpse of Earth's earliest known carbon reservoir. New ion microprobe analyses of the carbon isotope composition of these inclusions reveal low carbon isotopic ratios, which could reflect deep subduction of biogenic surface carbon. Though this is not unambiguous evidence for life on Earth as early as 4,250 million years ago, as low carbon isotope values can also be produced by certain inorganic chemical reactions. The recent discovery of diamond graphite inclusions in the Earth's oldest zircon grains from the Jack Hills metasediments in Western Australia provides a unique opportunity to investigate Earth's earliest known carbon reservoir. This paper reports ion microprobe analyses of the carbon isotope composition of these diamond-graphite inclusions and finds low carbon isotopic ratios, which may reflect deep subduction of biogenic surface carbon. But such carbon isotope values may also be produced by inorganic chemical reactions. The recent discovery of diamond–graphite inclusions in the Earth’s oldest zircon grains (formed up to 4,252 Myr ago) from the Jack Hills metasediments in Western Australia 1 provides a unique opportunity to investigate Earth’s earliest known carbon reservoir. Here we report ion microprobe analyses of the carbon isotope composition of these diamond–graphite inclusions. The observed δ 13 C PDB values (expressed using the PeeDee Belemnite standard) range between -5 per mil and -58 per mil with a median of -31 per mil. This extends beyond typical mantle values of around -6 per mil to values observed in metamorphic and some eclogitic diamonds that are interpreted to reflect deep subduction of low-δ 13 C PDB biogenic surface carbon. Low δ 13 C PDB values may also be produced by inorganic chemical reactions 2 , and therefore are not unambiguous evidence for life on Earth as early as 4,250 Myr ago. Regardless, our results suggest that a low-δ 13 C PDB reservoir may have existed on the early Earth.
doi_str_mv 10.1038/nature07102
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69286338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632098175</galeid><sourcerecordid>A632098175</sourcerecordid><originalsourceid>FETCH-LOGICAL-a644t-9d9c2a623c76ea01a29a534151d59d58b5f5ff07ff7b35b8cda19b088e7306863</originalsourceid><addsrcrecordid>eNp10t1rFDEQAPAgij2rT77LIiiIbk12Nx_7eBzVVkoFrfgYZvNxl7qbXJNdqf71ptzh9eQkDwmTX2bCMAg9J_iE4Fq89zBO0WBOcPUAzUjDWdkwwR-iGcaVKLGo2RF6ktI1xpgS3jxGR0TQlgksZuhyXvRuuRoLBbELvogmmfgzuJhPKkRtdOF88dtFFXy5CmnMAe1gCF4XNoahGFem-ATqR3Hm-j49RY8s9Mk82-7H6NuH06vFWXnx-eP5Yn5RAmuasWx1qypgVa04M4AJVC3QuiGUaNpqKjpqqbWYW8u7mnZCaSBth4UwvMZMsPoYvd7kXcdwM5k0ysElZfoevAlTkqytsqpFhi__gddhij7_TVa4oXXLBcmo3KAl9EY6b8MYQS2NNxH64I11OTxndYVbQTjdJd3zau1u5H10cgDlpc3g1MGsb_YeZDOa23EJU0ry_OuXffv2_3Z-9X1xeVCrGFKKxsp1dAPEX5JgeTdD8t4MZf1i27KpG4ze2e3QZPBqCyAp6G0Er1z663JfGRPkzr3buJSv_NLEXe8P1f0DKjzZqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204539781</pqid></control><display><type>article</type><title>A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Nemchin, Alexander A. ; Whitehouse, Martin J. ; Menneken, Martina ; Geisler, Thorsten ; Pidgeon, Robert T. ; Wilde, Simon A.</creator><creatorcontrib>Nemchin, Alexander A. ; Whitehouse, Martin J. ; Menneken, Martina ; Geisler, Thorsten ; Pidgeon, Robert T. ; Wilde, Simon A.</creatorcontrib><description>An early carbon reservoir The recent discovery of diamond and graphite inclusions in zircon grains formed over 4 billion years ago in the Jack Hills meta-sedimentary belt in Western Australia has given geologists a glimpse of Earth's earliest known carbon reservoir. New ion microprobe analyses of the carbon isotope composition of these inclusions reveal low carbon isotopic ratios, which could reflect deep subduction of biogenic surface carbon. Though this is not unambiguous evidence for life on Earth as early as 4,250 million years ago, as low carbon isotope values can also be produced by certain inorganic chemical reactions. The recent discovery of diamond graphite inclusions in the Earth's oldest zircon grains from the Jack Hills metasediments in Western Australia provides a unique opportunity to investigate Earth's earliest known carbon reservoir. This paper reports ion microprobe analyses of the carbon isotope composition of these diamond-graphite inclusions and finds low carbon isotopic ratios, which may reflect deep subduction of biogenic surface carbon. But such carbon isotope values may also be produced by inorganic chemical reactions. The recent discovery of diamond–graphite inclusions in the Earth’s oldest zircon grains (formed up to 4,252 Myr ago) from the Jack Hills metasediments in Western Australia 1 provides a unique opportunity to investigate Earth’s earliest known carbon reservoir. Here we report ion microprobe analyses of the carbon isotope composition of these diamond–graphite inclusions. The observed δ 13 C PDB values (expressed using the PeeDee Belemnite standard) range between -5 per mil and -58 per mil with a median of -31 per mil. This extends beyond typical mantle values of around -6 per mil to values observed in metamorphic and some eclogitic diamonds that are interpreted to reflect deep subduction of low-δ 13 C PDB biogenic surface carbon. Low δ 13 C PDB values may also be produced by inorganic chemical reactions 2 , and therefore are not unambiguous evidence for life on Earth as early as 4,250 Myr ago. Regardless, our results suggest that a low-δ 13 C PDB reservoir may have existed on the early Earth.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature07102</identifier><identifier>PMID: 18596808</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Analysis ; Carbon ; Carbon isotopes ; Carbonate reservoirs ; Chemical reactions ; Diamonds ; Discovery and exploration ; Earth ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geochronology ; Geology ; Hills ; Humanities and Social Sciences ; Internal geophysics ; Isotope geochemistry. Geochronology ; Isotopes ; letter ; Mass spectrometry ; multidisciplinary ; Phase transitions ; Reservoirs ; Science ; Science (multidisciplinary) ; Solid-earth geophysics, tectonophysics, gravimetry ; Trends ; Zircon ; Zirconium</subject><ispartof>Nature (London), 2008-07, Vol.454 (7200), p.92-95</ispartof><rights>Macmillan Publishers Limited. All rights reserved 2008</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 3, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a644t-9d9c2a623c76ea01a29a534151d59d58b5f5ff07ff7b35b8cda19b088e7306863</citedby><cites>FETCH-LOGICAL-a644t-9d9c2a623c76ea01a29a534151d59d58b5f5ff07ff7b35b8cda19b088e7306863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature07102$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature07102$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20466818$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18596808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nemchin, Alexander A.</creatorcontrib><creatorcontrib>Whitehouse, Martin J.</creatorcontrib><creatorcontrib>Menneken, Martina</creatorcontrib><creatorcontrib>Geisler, Thorsten</creatorcontrib><creatorcontrib>Pidgeon, Robert T.</creatorcontrib><creatorcontrib>Wilde, Simon A.</creatorcontrib><title>A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>An early carbon reservoir The recent discovery of diamond and graphite inclusions in zircon grains formed over 4 billion years ago in the Jack Hills meta-sedimentary belt in Western Australia has given geologists a glimpse of Earth's earliest known carbon reservoir. New ion microprobe analyses of the carbon isotope composition of these inclusions reveal low carbon isotopic ratios, which could reflect deep subduction of biogenic surface carbon. Though this is not unambiguous evidence for life on Earth as early as 4,250 million years ago, as low carbon isotope values can also be produced by certain inorganic chemical reactions. The recent discovery of diamond graphite inclusions in the Earth's oldest zircon grains from the Jack Hills metasediments in Western Australia provides a unique opportunity to investigate Earth's earliest known carbon reservoir. This paper reports ion microprobe analyses of the carbon isotope composition of these diamond-graphite inclusions and finds low carbon isotopic ratios, which may reflect deep subduction of biogenic surface carbon. But such carbon isotope values may also be produced by inorganic chemical reactions. The recent discovery of diamond–graphite inclusions in the Earth’s oldest zircon grains (formed up to 4,252 Myr ago) from the Jack Hills metasediments in Western Australia 1 provides a unique opportunity to investigate Earth’s earliest known carbon reservoir. Here we report ion microprobe analyses of the carbon isotope composition of these diamond–graphite inclusions. The observed δ 13 C PDB values (expressed using the PeeDee Belemnite standard) range between -5 per mil and -58 per mil with a median of -31 per mil. This extends beyond typical mantle values of around -6 per mil to values observed in metamorphic and some eclogitic diamonds that are interpreted to reflect deep subduction of low-δ 13 C PDB biogenic surface carbon. Low δ 13 C PDB values may also be produced by inorganic chemical reactions 2 , and therefore are not unambiguous evidence for life on Earth as early as 4,250 Myr ago. Regardless, our results suggest that a low-δ 13 C PDB reservoir may have existed on the early Earth.</description><subject>Analysis</subject><subject>Carbon</subject><subject>Carbon isotopes</subject><subject>Carbonate reservoirs</subject><subject>Chemical reactions</subject><subject>Diamonds</subject><subject>Discovery and exploration</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geochronology</subject><subject>Geology</subject><subject>Hills</subject><subject>Humanities and Social Sciences</subject><subject>Internal geophysics</subject><subject>Isotope geochemistry. Geochronology</subject><subject>Isotopes</subject><subject>letter</subject><subject>Mass spectrometry</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Reservoirs</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solid-earth geophysics, tectonophysics, gravimetry</subject><subject>Trends</subject><subject>Zircon</subject><subject>Zirconium</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10t1rFDEQAPAgij2rT77LIiiIbk12Nx_7eBzVVkoFrfgYZvNxl7qbXJNdqf71ptzh9eQkDwmTX2bCMAg9J_iE4Fq89zBO0WBOcPUAzUjDWdkwwR-iGcaVKLGo2RF6ktI1xpgS3jxGR0TQlgksZuhyXvRuuRoLBbELvogmmfgzuJhPKkRtdOF88dtFFXy5CmnMAe1gCF4XNoahGFem-ATqR3Hm-j49RY8s9Mk82-7H6NuH06vFWXnx-eP5Yn5RAmuasWx1qypgVa04M4AJVC3QuiGUaNpqKjpqqbWYW8u7mnZCaSBth4UwvMZMsPoYvd7kXcdwM5k0ysElZfoevAlTkqytsqpFhi__gddhij7_TVa4oXXLBcmo3KAl9EY6b8MYQS2NNxH64I11OTxndYVbQTjdJd3zau1u5H10cgDlpc3g1MGsb_YeZDOa23EJU0ry_OuXffv2_3Z-9X1xeVCrGFKKxsp1dAPEX5JgeTdD8t4MZf1i27KpG4ze2e3QZPBqCyAp6G0Er1z663JfGRPkzr3buJSv_NLEXe8P1f0DKjzZqA</recordid><startdate>20080703</startdate><enddate>20080703</enddate><creator>Nemchin, Alexander A.</creator><creator>Whitehouse, Martin J.</creator><creator>Menneken, Martina</creator><creator>Geisler, Thorsten</creator><creator>Pidgeon, Robert T.</creator><creator>Wilde, Simon A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20080703</creationdate><title>A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills</title><author>Nemchin, Alexander A. ; Whitehouse, Martin J. ; Menneken, Martina ; Geisler, Thorsten ; Pidgeon, Robert T. ; Wilde, Simon A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a644t-9d9c2a623c76ea01a29a534151d59d58b5f5ff07ff7b35b8cda19b088e7306863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis</topic><topic>Carbon</topic><topic>Carbon isotopes</topic><topic>Carbonate reservoirs</topic><topic>Chemical reactions</topic><topic>Diamonds</topic><topic>Discovery and exploration</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geochronology</topic><topic>Geology</topic><topic>Hills</topic><topic>Humanities and Social Sciences</topic><topic>Internal geophysics</topic><topic>Isotope geochemistry. Geochronology</topic><topic>Isotopes</topic><topic>letter</topic><topic>Mass spectrometry</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Reservoirs</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solid-earth geophysics, tectonophysics, gravimetry</topic><topic>Trends</topic><topic>Zircon</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nemchin, Alexander A.</creatorcontrib><creatorcontrib>Whitehouse, Martin J.</creatorcontrib><creatorcontrib>Menneken, Martina</creatorcontrib><creatorcontrib>Geisler, Thorsten</creatorcontrib><creatorcontrib>Pidgeon, Robert T.</creatorcontrib><creatorcontrib>Wilde, Simon A.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nemchin, Alexander A.</au><au>Whitehouse, Martin J.</au><au>Menneken, Martina</au><au>Geisler, Thorsten</au><au>Pidgeon, Robert T.</au><au>Wilde, Simon A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2008-07-03</date><risdate>2008</risdate><volume>454</volume><issue>7200</issue><spage>92</spage><epage>95</epage><pages>92-95</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>An early carbon reservoir The recent discovery of diamond and graphite inclusions in zircon grains formed over 4 billion years ago in the Jack Hills meta-sedimentary belt in Western Australia has given geologists a glimpse of Earth's earliest known carbon reservoir. New ion microprobe analyses of the carbon isotope composition of these inclusions reveal low carbon isotopic ratios, which could reflect deep subduction of biogenic surface carbon. Though this is not unambiguous evidence for life on Earth as early as 4,250 million years ago, as low carbon isotope values can also be produced by certain inorganic chemical reactions. The recent discovery of diamond graphite inclusions in the Earth's oldest zircon grains from the Jack Hills metasediments in Western Australia provides a unique opportunity to investigate Earth's earliest known carbon reservoir. This paper reports ion microprobe analyses of the carbon isotope composition of these diamond-graphite inclusions and finds low carbon isotopic ratios, which may reflect deep subduction of biogenic surface carbon. But such carbon isotope values may also be produced by inorganic chemical reactions. The recent discovery of diamond–graphite inclusions in the Earth’s oldest zircon grains (formed up to 4,252 Myr ago) from the Jack Hills metasediments in Western Australia 1 provides a unique opportunity to investigate Earth’s earliest known carbon reservoir. Here we report ion microprobe analyses of the carbon isotope composition of these diamond–graphite inclusions. The observed δ 13 C PDB values (expressed using the PeeDee Belemnite standard) range between -5 per mil and -58 per mil with a median of -31 per mil. This extends beyond typical mantle values of around -6 per mil to values observed in metamorphic and some eclogitic diamonds that are interpreted to reflect deep subduction of low-δ 13 C PDB biogenic surface carbon. Low δ 13 C PDB values may also be produced by inorganic chemical reactions 2 , and therefore are not unambiguous evidence for life on Earth as early as 4,250 Myr ago. Regardless, our results suggest that a low-δ 13 C PDB reservoir may have existed on the early Earth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18596808</pmid><doi>10.1038/nature07102</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2008-07, Vol.454 (7200), p.92-95
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_69286338
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Analysis
Carbon
Carbon isotopes
Carbonate reservoirs
Chemical reactions
Diamonds
Discovery and exploration
Earth
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geochronology
Geology
Hills
Humanities and Social Sciences
Internal geophysics
Isotope geochemistry. Geochronology
Isotopes
letter
Mass spectrometry
multidisciplinary
Phase transitions
Reservoirs
Science
Science (multidisciplinary)
Solid-earth geophysics, tectonophysics, gravimetry
Trends
Zircon
Zirconium
title A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20light%20carbon%20reservoir%20recorded%20in%20zircon-hosted%20diamond%20from%20the%20Jack%20Hills&rft.jtitle=Nature%20(London)&rft.au=Nemchin,%20Alexander%20A.&rft.date=2008-07-03&rft.volume=454&rft.issue=7200&rft.spage=92&rft.epage=95&rft.pages=92-95&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature07102&rft_dat=%3Cgale_proqu%3EA632098175%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204539781&rft_id=info:pmid/18596808&rft_galeid=A632098175&rfr_iscdi=true