High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents
Abstract A recent study has shown the feasibility of subharmonic (SH) flow imaging at a transmit frequency of 20 MHz. This paper builds on these results by examining the performance of SH flow imaging as a function of transmit pressure. Further, we also investigate the feasibility of SH pulsed-wave...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 2008-07, Vol.34 (7), p.1139-1151 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1151 |
---|---|
container_issue | 7 |
container_start_page | 1139 |
container_title | Ultrasound in medicine & biology |
container_volume | 34 |
creator | Needles, A Goertz, D.E Karshafian, R Cherin, E Brown, A.S Burns, P.N Foster, F.S |
description | Abstract A recent study has shown the feasibility of subharmonic (SH) flow imaging at a transmit frequency of 20 MHz. This paper builds on these results by examining the performance of SH flow imaging as a function of transmit pressure. Further, we also investigate the feasibility of SH pulsed-wave Doppler (PWD) imaging. In vitro flow experiments were performed with a 1-mm-diameter wall-less vessel cryogel phantom using the ultrasound contrast agent Definity™ and an imaging frequency of 20 MHz. The phantom results show that there is an identifiable pressure range where accurate flow velocity and power estimates can be made with SH imaging at 10 MHz (SH10), above which velocity estimates are biased by radiation force effects and unstable bubble behavior, and below which velocity and power estimates are degraded by poor SNR. In vivo validation of SH PWD was performed in an arteriole of a rabbit ear, and blood velocity estimates compared well with fundamental (F20) mode PWD. The ability to suppress tissue signals using SH signals may enable the use of higher frame rates and improve sensitivity to microvascular flow or slow velocities near large vessel walls by reducing or eliminating the need for clutter filters. ( E-mail: aneedles@visualsonics.com ) |
doi_str_mv | 10.1016/j.ultrasmedbio.2007.12.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69279813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0301562907006552</els_id><sourcerecordid>69279813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-6b1cc482850b963269f4f2f602287f9e101b07f209b531b659767a3a823b1ab83</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EotPCX0AWC3ZJ_Zj4wQKpmjJtpaJWKgh2lu04Uw9OPNhJq_n3OJqRQKxYeeFzzr33OwC8x6jGCLPzbT2FMencu9b4WBOEeI1JjTB-ARZYcFkRiX-8BAtEEa4aRuQJOM15i4qQUf4anGBBiWCYL0B77TeP1Tq5X5Mb7B4-TOZRpz4O3sL7KWTXVt_1k4OXcbcLLkE9tHAVQ0xwHeIzvOn1xg8bGDv4xdsUzWRMcEUxzAuO8GLjhjG_Aa86XbLeHt8z8G39-evqurq9u7pZXdxWdknpWDGDrV0KIhpkJKOEyW7ZkY4hQgTvpCvHG8Q7gqRpKDaskZxxTbUg1GBtBD0DHw65uxTLPXlUvc_WhaAHF6esmCRcCkyL8ONBWFbOOblO7ZLvddorjNTMWG3V34zVzFhhogrjYn53nDKZ8v3HeoRaBJcHgSu3PnmXVLa-0HWtT86Oqo3-_-Z8-ifGBl960eGn27u8jVMaCk2FVS4G9TC3PZeNOEKsaQj9DbWTqPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69279813</pqid></control><display><type>article</type><title>High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Needles, A ; Goertz, D.E ; Karshafian, R ; Cherin, E ; Brown, A.S ; Burns, P.N ; Foster, F.S</creator><creatorcontrib>Needles, A ; Goertz, D.E ; Karshafian, R ; Cherin, E ; Brown, A.S ; Burns, P.N ; Foster, F.S</creatorcontrib><description>Abstract A recent study has shown the feasibility of subharmonic (SH) flow imaging at a transmit frequency of 20 MHz. This paper builds on these results by examining the performance of SH flow imaging as a function of transmit pressure. Further, we also investigate the feasibility of SH pulsed-wave Doppler (PWD) imaging. In vitro flow experiments were performed with a 1-mm-diameter wall-less vessel cryogel phantom using the ultrasound contrast agent Definity™ and an imaging frequency of 20 MHz. The phantom results show that there is an identifiable pressure range where accurate flow velocity and power estimates can be made with SH imaging at 10 MHz (SH10), above which velocity estimates are biased by radiation force effects and unstable bubble behavior, and below which velocity and power estimates are degraded by poor SNR. In vivo validation of SH PWD was performed in an arteriole of a rabbit ear, and blood velocity estimates compared well with fundamental (F20) mode PWD. The ability to suppress tissue signals using SH signals may enable the use of higher frame rates and improve sensitivity to microvascular flow or slow velocities near large vessel walls by reducing or eliminating the need for clutter filters. ( E-mail: aneedles@visualsonics.com )</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2007.12.011</identifier><identifier>PMID: 18328617</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Arterioles - diagnostic imaging ; Arterioles - physiology ; Blood Flow Velocity ; Clutter filter ; Color flow ; Contrast Media ; Definity ; Ear - blood supply ; Fluorocarbons ; High-frequency ultrasound ; Image Interpretation, Computer-Assisted ; Microbubbles ; Phantoms, Imaging ; Power Doppler ; Pulsed-wave Doppler ; Rabbits ; Radiology ; Signal Processing, Computer-Assisted ; Subharmonic ; Ultrasonography, Doppler, Color - instrumentation ; Ultrasonography, Doppler, Color - methods ; Ultrasonography, Doppler, Pulsed - instrumentation ; Ultrasonography, Doppler, Pulsed - methods</subject><ispartof>Ultrasound in medicine & biology, 2008-07, Vol.34 (7), p.1139-1151</ispartof><rights>World Federation for Ultrasound in Medicine & Biology</rights><rights>2008 World Federation for Ultrasound in Medicine & Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-6b1cc482850b963269f4f2f602287f9e101b07f209b531b659767a3a823b1ab83</citedby><cites>FETCH-LOGICAL-c433t-6b1cc482850b963269f4f2f602287f9e101b07f209b531b659767a3a823b1ab83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultrasmedbio.2007.12.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18328617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Needles, A</creatorcontrib><creatorcontrib>Goertz, D.E</creatorcontrib><creatorcontrib>Karshafian, R</creatorcontrib><creatorcontrib>Cherin, E</creatorcontrib><creatorcontrib>Brown, A.S</creatorcontrib><creatorcontrib>Burns, P.N</creatorcontrib><creatorcontrib>Foster, F.S</creatorcontrib><title>High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents</title><title>Ultrasound in medicine & biology</title><addtitle>Ultrasound Med Biol</addtitle><description>Abstract A recent study has shown the feasibility of subharmonic (SH) flow imaging at a transmit frequency of 20 MHz. This paper builds on these results by examining the performance of SH flow imaging as a function of transmit pressure. Further, we also investigate the feasibility of SH pulsed-wave Doppler (PWD) imaging. In vitro flow experiments were performed with a 1-mm-diameter wall-less vessel cryogel phantom using the ultrasound contrast agent Definity™ and an imaging frequency of 20 MHz. The phantom results show that there is an identifiable pressure range where accurate flow velocity and power estimates can be made with SH imaging at 10 MHz (SH10), above which velocity estimates are biased by radiation force effects and unstable bubble behavior, and below which velocity and power estimates are degraded by poor SNR. In vivo validation of SH PWD was performed in an arteriole of a rabbit ear, and blood velocity estimates compared well with fundamental (F20) mode PWD. The ability to suppress tissue signals using SH signals may enable the use of higher frame rates and improve sensitivity to microvascular flow or slow velocities near large vessel walls by reducing or eliminating the need for clutter filters. ( E-mail: aneedles@visualsonics.com )</description><subject>Animals</subject><subject>Arterioles - diagnostic imaging</subject><subject>Arterioles - physiology</subject><subject>Blood Flow Velocity</subject><subject>Clutter filter</subject><subject>Color flow</subject><subject>Contrast Media</subject><subject>Definity</subject><subject>Ear - blood supply</subject><subject>Fluorocarbons</subject><subject>High-frequency ultrasound</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Microbubbles</subject><subject>Phantoms, Imaging</subject><subject>Power Doppler</subject><subject>Pulsed-wave Doppler</subject><subject>Rabbits</subject><subject>Radiology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Subharmonic</subject><subject>Ultrasonography, Doppler, Color - instrumentation</subject><subject>Ultrasonography, Doppler, Color - methods</subject><subject>Ultrasonography, Doppler, Pulsed - instrumentation</subject><subject>Ultrasonography, Doppler, Pulsed - methods</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhS0EotPCX0AWC3ZJ_Zj4wQKpmjJtpaJWKgh2lu04Uw9OPNhJq_n3OJqRQKxYeeFzzr33OwC8x6jGCLPzbT2FMencu9b4WBOEeI1JjTB-ARZYcFkRiX-8BAtEEa4aRuQJOM15i4qQUf4anGBBiWCYL0B77TeP1Tq5X5Mb7B4-TOZRpz4O3sL7KWTXVt_1k4OXcbcLLkE9tHAVQ0xwHeIzvOn1xg8bGDv4xdsUzWRMcEUxzAuO8GLjhjG_Aa86XbLeHt8z8G39-evqurq9u7pZXdxWdknpWDGDrV0KIhpkJKOEyW7ZkY4hQgTvpCvHG8Q7gqRpKDaskZxxTbUg1GBtBD0DHw65uxTLPXlUvc_WhaAHF6esmCRcCkyL8ONBWFbOOblO7ZLvddorjNTMWG3V34zVzFhhogrjYn53nDKZ8v3HeoRaBJcHgSu3PnmXVLa-0HWtT86Oqo3-_-Z8-ifGBl960eGn27u8jVMaCk2FVS4G9TC3PZeNOEKsaQj9DbWTqPY</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Needles, A</creator><creator>Goertz, D.E</creator><creator>Karshafian, R</creator><creator>Cherin, E</creator><creator>Brown, A.S</creator><creator>Burns, P.N</creator><creator>Foster, F.S</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents</title><author>Needles, A ; Goertz, D.E ; Karshafian, R ; Cherin, E ; Brown, A.S ; Burns, P.N ; Foster, F.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-6b1cc482850b963269f4f2f602287f9e101b07f209b531b659767a3a823b1ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Arterioles - diagnostic imaging</topic><topic>Arterioles - physiology</topic><topic>Blood Flow Velocity</topic><topic>Clutter filter</topic><topic>Color flow</topic><topic>Contrast Media</topic><topic>Definity</topic><topic>Ear - blood supply</topic><topic>Fluorocarbons</topic><topic>High-frequency ultrasound</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Microbubbles</topic><topic>Phantoms, Imaging</topic><topic>Power Doppler</topic><topic>Pulsed-wave Doppler</topic><topic>Rabbits</topic><topic>Radiology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Subharmonic</topic><topic>Ultrasonography, Doppler, Color - instrumentation</topic><topic>Ultrasonography, Doppler, Color - methods</topic><topic>Ultrasonography, Doppler, Pulsed - instrumentation</topic><topic>Ultrasonography, Doppler, Pulsed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Needles, A</creatorcontrib><creatorcontrib>Goertz, D.E</creatorcontrib><creatorcontrib>Karshafian, R</creatorcontrib><creatorcontrib>Cherin, E</creatorcontrib><creatorcontrib>Brown, A.S</creatorcontrib><creatorcontrib>Burns, P.N</creatorcontrib><creatorcontrib>Foster, F.S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Needles, A</au><au>Goertz, D.E</au><au>Karshafian, R</au><au>Cherin, E</au><au>Brown, A.S</au><au>Burns, P.N</au><au>Foster, F.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents</atitle><jtitle>Ultrasound in medicine & biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>34</volume><issue>7</issue><spage>1139</spage><epage>1151</epage><pages>1139-1151</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><abstract>Abstract A recent study has shown the feasibility of subharmonic (SH) flow imaging at a transmit frequency of 20 MHz. This paper builds on these results by examining the performance of SH flow imaging as a function of transmit pressure. Further, we also investigate the feasibility of SH pulsed-wave Doppler (PWD) imaging. In vitro flow experiments were performed with a 1-mm-diameter wall-less vessel cryogel phantom using the ultrasound contrast agent Definity™ and an imaging frequency of 20 MHz. The phantom results show that there is an identifiable pressure range where accurate flow velocity and power estimates can be made with SH imaging at 10 MHz (SH10), above which velocity estimates are biased by radiation force effects and unstable bubble behavior, and below which velocity and power estimates are degraded by poor SNR. In vivo validation of SH PWD was performed in an arteriole of a rabbit ear, and blood velocity estimates compared well with fundamental (F20) mode PWD. The ability to suppress tissue signals using SH signals may enable the use of higher frame rates and improve sensitivity to microvascular flow or slow velocities near large vessel walls by reducing or eliminating the need for clutter filters. ( E-mail: aneedles@visualsonics.com )</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>18328617</pmid><doi>10.1016/j.ultrasmedbio.2007.12.011</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-5629 |
ispartof | Ultrasound in medicine & biology, 2008-07, Vol.34 (7), p.1139-1151 |
issn | 0301-5629 1879-291X |
language | eng |
recordid | cdi_proquest_miscellaneous_69279813 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Arterioles - diagnostic imaging Arterioles - physiology Blood Flow Velocity Clutter filter Color flow Contrast Media Definity Ear - blood supply Fluorocarbons High-frequency ultrasound Image Interpretation, Computer-Assisted Microbubbles Phantoms, Imaging Power Doppler Pulsed-wave Doppler Rabbits Radiology Signal Processing, Computer-Assisted Subharmonic Ultrasonography, Doppler, Color - instrumentation Ultrasonography, Doppler, Color - methods Ultrasonography, Doppler, Pulsed - instrumentation Ultrasonography, Doppler, Pulsed - methods |
title | High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Frequency%20Subharmonic%20Pulsed-Wave%20Doppler%20and%20Color%20Flow%20Imaging%20of%20Microbubble%20Contrast%20Agents&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Needles,%20A&rft.date=2008-07-01&rft.volume=34&rft.issue=7&rft.spage=1139&rft.epage=1151&rft.pages=1139-1151&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2007.12.011&rft_dat=%3Cproquest_cross%3E69279813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69279813&rft_id=info:pmid/18328617&rft_els_id=1_s2_0_S0301562907006552&rfr_iscdi=true |