High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents

Abstract A recent study has shown the feasibility of subharmonic (SH) flow imaging at a transmit frequency of 20 MHz. This paper builds on these results by examining the performance of SH flow imaging as a function of transmit pressure. Further, we also investigate the feasibility of SH pulsed-wave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in medicine & biology 2008-07, Vol.34 (7), p.1139-1151
Hauptverfasser: Needles, A, Goertz, D.E, Karshafian, R, Cherin, E, Brown, A.S, Burns, P.N, Foster, F.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1151
container_issue 7
container_start_page 1139
container_title Ultrasound in medicine & biology
container_volume 34
creator Needles, A
Goertz, D.E
Karshafian, R
Cherin, E
Brown, A.S
Burns, P.N
Foster, F.S
description Abstract A recent study has shown the feasibility of subharmonic (SH) flow imaging at a transmit frequency of 20 MHz. This paper builds on these results by examining the performance of SH flow imaging as a function of transmit pressure. Further, we also investigate the feasibility of SH pulsed-wave Doppler (PWD) imaging. In vitro flow experiments were performed with a 1-mm-diameter wall-less vessel cryogel phantom using the ultrasound contrast agent Definity™ and an imaging frequency of 20 MHz. The phantom results show that there is an identifiable pressure range where accurate flow velocity and power estimates can be made with SH imaging at 10 MHz (SH10), above which velocity estimates are biased by radiation force effects and unstable bubble behavior, and below which velocity and power estimates are degraded by poor SNR. In vivo validation of SH PWD was performed in an arteriole of a rabbit ear, and blood velocity estimates compared well with fundamental (F20) mode PWD. The ability to suppress tissue signals using SH signals may enable the use of higher frame rates and improve sensitivity to microvascular flow or slow velocities near large vessel walls by reducing or eliminating the need for clutter filters. ( E-mail: aneedles@visualsonics.com )
doi_str_mv 10.1016/j.ultrasmedbio.2007.12.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69279813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0301562907006552</els_id><sourcerecordid>69279813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-6b1cc482850b963269f4f2f602287f9e101b07f209b531b659767a3a823b1ab83</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EotPCX0AWC3ZJ_Zj4wQKpmjJtpaJWKgh2lu04Uw9OPNhJq_n3OJqRQKxYeeFzzr33OwC8x6jGCLPzbT2FMencu9b4WBOEeI1JjTB-ARZYcFkRiX-8BAtEEa4aRuQJOM15i4qQUf4anGBBiWCYL0B77TeP1Tq5X5Mb7B4-TOZRpz4O3sL7KWTXVt_1k4OXcbcLLkE9tHAVQ0xwHeIzvOn1xg8bGDv4xdsUzWRMcEUxzAuO8GLjhjG_Aa86XbLeHt8z8G39-evqurq9u7pZXdxWdknpWDGDrV0KIhpkJKOEyW7ZkY4hQgTvpCvHG8Q7gqRpKDaskZxxTbUg1GBtBD0DHw65uxTLPXlUvc_WhaAHF6esmCRcCkyL8ONBWFbOOblO7ZLvddorjNTMWG3V34zVzFhhogrjYn53nDKZ8v3HeoRaBJcHgSu3PnmXVLa-0HWtT86Oqo3-_-Z8-ifGBl960eGn27u8jVMaCk2FVS4G9TC3PZeNOEKsaQj9DbWTqPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69279813</pqid></control><display><type>article</type><title>High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Needles, A ; Goertz, D.E ; Karshafian, R ; Cherin, E ; Brown, A.S ; Burns, P.N ; Foster, F.S</creator><creatorcontrib>Needles, A ; Goertz, D.E ; Karshafian, R ; Cherin, E ; Brown, A.S ; Burns, P.N ; Foster, F.S</creatorcontrib><description>Abstract A recent study has shown the feasibility of subharmonic (SH) flow imaging at a transmit frequency of 20 MHz. This paper builds on these results by examining the performance of SH flow imaging as a function of transmit pressure. Further, we also investigate the feasibility of SH pulsed-wave Doppler (PWD) imaging. In vitro flow experiments were performed with a 1-mm-diameter wall-less vessel cryogel phantom using the ultrasound contrast agent Definity™ and an imaging frequency of 20 MHz. The phantom results show that there is an identifiable pressure range where accurate flow velocity and power estimates can be made with SH imaging at 10 MHz (SH10), above which velocity estimates are biased by radiation force effects and unstable bubble behavior, and below which velocity and power estimates are degraded by poor SNR. In vivo validation of SH PWD was performed in an arteriole of a rabbit ear, and blood velocity estimates compared well with fundamental (F20) mode PWD. The ability to suppress tissue signals using SH signals may enable the use of higher frame rates and improve sensitivity to microvascular flow or slow velocities near large vessel walls by reducing or eliminating the need for clutter filters. ( E-mail: aneedles@visualsonics.com )</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2007.12.011</identifier><identifier>PMID: 18328617</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Arterioles - diagnostic imaging ; Arterioles - physiology ; Blood Flow Velocity ; Clutter filter ; Color flow ; Contrast Media ; Definity ; Ear - blood supply ; Fluorocarbons ; High-frequency ultrasound ; Image Interpretation, Computer-Assisted ; Microbubbles ; Phantoms, Imaging ; Power Doppler ; Pulsed-wave Doppler ; Rabbits ; Radiology ; Signal Processing, Computer-Assisted ; Subharmonic ; Ultrasonography, Doppler, Color - instrumentation ; Ultrasonography, Doppler, Color - methods ; Ultrasonography, Doppler, Pulsed - instrumentation ; Ultrasonography, Doppler, Pulsed - methods</subject><ispartof>Ultrasound in medicine &amp; biology, 2008-07, Vol.34 (7), p.1139-1151</ispartof><rights>World Federation for Ultrasound in Medicine &amp; Biology</rights><rights>2008 World Federation for Ultrasound in Medicine &amp; Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-6b1cc482850b963269f4f2f602287f9e101b07f209b531b659767a3a823b1ab83</citedby><cites>FETCH-LOGICAL-c433t-6b1cc482850b963269f4f2f602287f9e101b07f209b531b659767a3a823b1ab83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultrasmedbio.2007.12.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18328617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Needles, A</creatorcontrib><creatorcontrib>Goertz, D.E</creatorcontrib><creatorcontrib>Karshafian, R</creatorcontrib><creatorcontrib>Cherin, E</creatorcontrib><creatorcontrib>Brown, A.S</creatorcontrib><creatorcontrib>Burns, P.N</creatorcontrib><creatorcontrib>Foster, F.S</creatorcontrib><title>High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents</title><title>Ultrasound in medicine &amp; biology</title><addtitle>Ultrasound Med Biol</addtitle><description>Abstract A recent study has shown the feasibility of subharmonic (SH) flow imaging at a transmit frequency of 20 MHz. This paper builds on these results by examining the performance of SH flow imaging as a function of transmit pressure. Further, we also investigate the feasibility of SH pulsed-wave Doppler (PWD) imaging. In vitro flow experiments were performed with a 1-mm-diameter wall-less vessel cryogel phantom using the ultrasound contrast agent Definity™ and an imaging frequency of 20 MHz. The phantom results show that there is an identifiable pressure range where accurate flow velocity and power estimates can be made with SH imaging at 10 MHz (SH10), above which velocity estimates are biased by radiation force effects and unstable bubble behavior, and below which velocity and power estimates are degraded by poor SNR. In vivo validation of SH PWD was performed in an arteriole of a rabbit ear, and blood velocity estimates compared well with fundamental (F20) mode PWD. The ability to suppress tissue signals using SH signals may enable the use of higher frame rates and improve sensitivity to microvascular flow or slow velocities near large vessel walls by reducing or eliminating the need for clutter filters. ( E-mail: aneedles@visualsonics.com )</description><subject>Animals</subject><subject>Arterioles - diagnostic imaging</subject><subject>Arterioles - physiology</subject><subject>Blood Flow Velocity</subject><subject>Clutter filter</subject><subject>Color flow</subject><subject>Contrast Media</subject><subject>Definity</subject><subject>Ear - blood supply</subject><subject>Fluorocarbons</subject><subject>High-frequency ultrasound</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Microbubbles</subject><subject>Phantoms, Imaging</subject><subject>Power Doppler</subject><subject>Pulsed-wave Doppler</subject><subject>Rabbits</subject><subject>Radiology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Subharmonic</subject><subject>Ultrasonography, Doppler, Color - instrumentation</subject><subject>Ultrasonography, Doppler, Color - methods</subject><subject>Ultrasonography, Doppler, Pulsed - instrumentation</subject><subject>Ultrasonography, Doppler, Pulsed - methods</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhS0EotPCX0AWC3ZJ_Zj4wQKpmjJtpaJWKgh2lu04Uw9OPNhJq_n3OJqRQKxYeeFzzr33OwC8x6jGCLPzbT2FMencu9b4WBOEeI1JjTB-ARZYcFkRiX-8BAtEEa4aRuQJOM15i4qQUf4anGBBiWCYL0B77TeP1Tq5X5Mb7B4-TOZRpz4O3sL7KWTXVt_1k4OXcbcLLkE9tHAVQ0xwHeIzvOn1xg8bGDv4xdsUzWRMcEUxzAuO8GLjhjG_Aa86XbLeHt8z8G39-evqurq9u7pZXdxWdknpWDGDrV0KIhpkJKOEyW7ZkY4hQgTvpCvHG8Q7gqRpKDaskZxxTbUg1GBtBD0DHw65uxTLPXlUvc_WhaAHF6esmCRcCkyL8ONBWFbOOblO7ZLvddorjNTMWG3V34zVzFhhogrjYn53nDKZ8v3HeoRaBJcHgSu3PnmXVLa-0HWtT86Oqo3-_-Z8-ifGBl960eGn27u8jVMaCk2FVS4G9TC3PZeNOEKsaQj9DbWTqPY</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Needles, A</creator><creator>Goertz, D.E</creator><creator>Karshafian, R</creator><creator>Cherin, E</creator><creator>Brown, A.S</creator><creator>Burns, P.N</creator><creator>Foster, F.S</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents</title><author>Needles, A ; Goertz, D.E ; Karshafian, R ; Cherin, E ; Brown, A.S ; Burns, P.N ; Foster, F.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-6b1cc482850b963269f4f2f602287f9e101b07f209b531b659767a3a823b1ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Arterioles - diagnostic imaging</topic><topic>Arterioles - physiology</topic><topic>Blood Flow Velocity</topic><topic>Clutter filter</topic><topic>Color flow</topic><topic>Contrast Media</topic><topic>Definity</topic><topic>Ear - blood supply</topic><topic>Fluorocarbons</topic><topic>High-frequency ultrasound</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Microbubbles</topic><topic>Phantoms, Imaging</topic><topic>Power Doppler</topic><topic>Pulsed-wave Doppler</topic><topic>Rabbits</topic><topic>Radiology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Subharmonic</topic><topic>Ultrasonography, Doppler, Color - instrumentation</topic><topic>Ultrasonography, Doppler, Color - methods</topic><topic>Ultrasonography, Doppler, Pulsed - instrumentation</topic><topic>Ultrasonography, Doppler, Pulsed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Needles, A</creatorcontrib><creatorcontrib>Goertz, D.E</creatorcontrib><creatorcontrib>Karshafian, R</creatorcontrib><creatorcontrib>Cherin, E</creatorcontrib><creatorcontrib>Brown, A.S</creatorcontrib><creatorcontrib>Burns, P.N</creatorcontrib><creatorcontrib>Foster, F.S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Needles, A</au><au>Goertz, D.E</au><au>Karshafian, R</au><au>Cherin, E</au><au>Brown, A.S</au><au>Burns, P.N</au><au>Foster, F.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents</atitle><jtitle>Ultrasound in medicine &amp; biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>34</volume><issue>7</issue><spage>1139</spage><epage>1151</epage><pages>1139-1151</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><abstract>Abstract A recent study has shown the feasibility of subharmonic (SH) flow imaging at a transmit frequency of 20 MHz. This paper builds on these results by examining the performance of SH flow imaging as a function of transmit pressure. Further, we also investigate the feasibility of SH pulsed-wave Doppler (PWD) imaging. In vitro flow experiments were performed with a 1-mm-diameter wall-less vessel cryogel phantom using the ultrasound contrast agent Definity™ and an imaging frequency of 20 MHz. The phantom results show that there is an identifiable pressure range where accurate flow velocity and power estimates can be made with SH imaging at 10 MHz (SH10), above which velocity estimates are biased by radiation force effects and unstable bubble behavior, and below which velocity and power estimates are degraded by poor SNR. In vivo validation of SH PWD was performed in an arteriole of a rabbit ear, and blood velocity estimates compared well with fundamental (F20) mode PWD. The ability to suppress tissue signals using SH signals may enable the use of higher frame rates and improve sensitivity to microvascular flow or slow velocities near large vessel walls by reducing or eliminating the need for clutter filters. ( E-mail: aneedles@visualsonics.com )</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>18328617</pmid><doi>10.1016/j.ultrasmedbio.2007.12.011</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-5629
ispartof Ultrasound in medicine & biology, 2008-07, Vol.34 (7), p.1139-1151
issn 0301-5629
1879-291X
language eng
recordid cdi_proquest_miscellaneous_69279813
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Arterioles - diagnostic imaging
Arterioles - physiology
Blood Flow Velocity
Clutter filter
Color flow
Contrast Media
Definity
Ear - blood supply
Fluorocarbons
High-frequency ultrasound
Image Interpretation, Computer-Assisted
Microbubbles
Phantoms, Imaging
Power Doppler
Pulsed-wave Doppler
Rabbits
Radiology
Signal Processing, Computer-Assisted
Subharmonic
Ultrasonography, Doppler, Color - instrumentation
Ultrasonography, Doppler, Color - methods
Ultrasonography, Doppler, Pulsed - instrumentation
Ultrasonography, Doppler, Pulsed - methods
title High-Frequency Subharmonic Pulsed-Wave Doppler and Color Flow Imaging of Microbubble Contrast Agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Frequency%20Subharmonic%20Pulsed-Wave%20Doppler%20and%20Color%20Flow%20Imaging%20of%20Microbubble%20Contrast%20Agents&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Needles,%20A&rft.date=2008-07-01&rft.volume=34&rft.issue=7&rft.spage=1139&rft.epage=1151&rft.pages=1139-1151&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2007.12.011&rft_dat=%3Cproquest_cross%3E69279813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69279813&rft_id=info:pmid/18328617&rft_els_id=1_s2_0_S0301562907006552&rfr_iscdi=true