Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium

This paper presents lateral-driven continuous dielectrophoretic (DEP) microseparators for separating red and white blood cells suspended in highly conductive dilute whole blood. The continuous microseparators enable the separation of blood cells based on the lateral DEP force generated by a planar i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2008-01, Vol.8 (7), p.1079-1086
Hauptverfasser: Han, Ki-Ho, Frazier, A Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1086
container_issue 7
container_start_page 1079
container_title Lab on a chip
container_volume 8
creator Han, Ki-Ho
Frazier, A Bruno
description This paper presents lateral-driven continuous dielectrophoretic (DEP) microseparators for separating red and white blood cells suspended in highly conductive dilute whole blood. The continuous microseparators enable the separation of blood cells based on the lateral DEP force generated by a planar interdigitated electrode array placed at an angle to the direction of flow. The simplified line charge model that we developed for the theoretical analysis was verified by comparing it with simulated and measured results. Experimental results showed that the divergent type of microseparator can continuously separate out 87.0% of the red blood cells (RBCs) and 92.1% of the white blood cells (WBCs) from dilute whole blood within 5 min simply by using a 2 MHz, 3 Vp-p AC voltage to create a gradient electric field in a medium that conducts at 17 mS cm(-1). Under the same conditions, the convergent type of microseparator could separate out 93.6% of the RBCs and 76.9% of the WBCs. We have shown that our lateral-driven continuous DEP microseparator design is practical for the continuous separation of blood cells without the need to control the conductivity of the suspension medium, overcoming critical drawbacks of DEP microseparators.
doi_str_mv 10.1039/b802321b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69262563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34994460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-2475174d7c1d3e7101b332673b5ccc69c033b6abed20ad3b28fa6c6d4b03e7073</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMo7roK_gLJSbxUk0yatkdZ_IIFL3ou-Vo30jY1SYX997bsqsc9zRweHmbeF6FLSm4pgepOlYQBo-oIzSkvICO0rI7_9qqYobMYPwmhORflKZrRMi85KdkcxZVMNsgmM8F92w5r3yXXDX6I2DjbWJ2C7zc-2OQ0bp0OPtpeBpl8iHjtA1aN9wZr2zQRxyH2tjPWYNdhiTfuY9NsJ6UZdBr1uLXGDe05OlnLJtqL_Vyg98eHt-Vztnp9elnerzINHFLGeJHTgptCUwO2oIQqACYKULnWWlSaACghlTWMSAOKlWsptDBckREnBSzQ9c7bB_812Jjq1sXpUtnZ8cFaVEywXMBBEHhVcS7IQZBRKjhUE3izA6fAYrDrug-ulWFbU1JPldW_lY3o1d45qDGff3DfEfwATl6TDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21164390</pqid></control><display><type>article</type><title>Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Han, Ki-Ho ; Frazier, A Bruno</creator><creatorcontrib>Han, Ki-Ho ; Frazier, A Bruno</creatorcontrib><description>This paper presents lateral-driven continuous dielectrophoretic (DEP) microseparators for separating red and white blood cells suspended in highly conductive dilute whole blood. The continuous microseparators enable the separation of blood cells based on the lateral DEP force generated by a planar interdigitated electrode array placed at an angle to the direction of flow. The simplified line charge model that we developed for the theoretical analysis was verified by comparing it with simulated and measured results. Experimental results showed that the divergent type of microseparator can continuously separate out 87.0% of the red blood cells (RBCs) and 92.1% of the white blood cells (WBCs) from dilute whole blood within 5 min simply by using a 2 MHz, 3 Vp-p AC voltage to create a gradient electric field in a medium that conducts at 17 mS cm(-1). Under the same conditions, the convergent type of microseparator could separate out 93.6% of the RBCs and 76.9% of the WBCs. We have shown that our lateral-driven continuous DEP microseparator design is practical for the continuous separation of blood cells without the need to control the conductivity of the suspension medium, overcoming critical drawbacks of DEP microseparators.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b802321b</identifier><identifier>PMID: 18584082</identifier><language>eng</language><publisher>England</publisher><subject>Cell Separation - methods ; Electric Conductivity ; Electrodes ; Erythrocytes - cytology ; Leukocytes - cytology ; Microfluidic Analytical Techniques - methods ; Particle Size ; Polystyrenes - chemistry</subject><ispartof>Lab on a chip, 2008-01, Vol.8 (7), p.1079-1086</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-2475174d7c1d3e7101b332673b5ccc69c033b6abed20ad3b28fa6c6d4b03e7073</citedby><cites>FETCH-LOGICAL-c343t-2475174d7c1d3e7101b332673b5ccc69c033b6abed20ad3b28fa6c6d4b03e7073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18584082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Ki-Ho</creatorcontrib><creatorcontrib>Frazier, A Bruno</creatorcontrib><title>Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>This paper presents lateral-driven continuous dielectrophoretic (DEP) microseparators for separating red and white blood cells suspended in highly conductive dilute whole blood. The continuous microseparators enable the separation of blood cells based on the lateral DEP force generated by a planar interdigitated electrode array placed at an angle to the direction of flow. The simplified line charge model that we developed for the theoretical analysis was verified by comparing it with simulated and measured results. Experimental results showed that the divergent type of microseparator can continuously separate out 87.0% of the red blood cells (RBCs) and 92.1% of the white blood cells (WBCs) from dilute whole blood within 5 min simply by using a 2 MHz, 3 Vp-p AC voltage to create a gradient electric field in a medium that conducts at 17 mS cm(-1). Under the same conditions, the convergent type of microseparator could separate out 93.6% of the RBCs and 76.9% of the WBCs. We have shown that our lateral-driven continuous DEP microseparator design is practical for the continuous separation of blood cells without the need to control the conductivity of the suspension medium, overcoming critical drawbacks of DEP microseparators.</description><subject>Cell Separation - methods</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Erythrocytes - cytology</subject><subject>Leukocytes - cytology</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Particle Size</subject><subject>Polystyrenes - chemistry</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1LxDAQhoMo7roK_gLJSbxUk0yatkdZ_IIFL3ou-Vo30jY1SYX997bsqsc9zRweHmbeF6FLSm4pgepOlYQBo-oIzSkvICO0rI7_9qqYobMYPwmhORflKZrRMi85KdkcxZVMNsgmM8F92w5r3yXXDX6I2DjbWJ2C7zc-2OQ0bp0OPtpeBpl8iHjtA1aN9wZr2zQRxyH2tjPWYNdhiTfuY9NsJ6UZdBr1uLXGDe05OlnLJtqL_Vyg98eHt-Vztnp9elnerzINHFLGeJHTgptCUwO2oIQqACYKULnWWlSaACghlTWMSAOKlWsptDBckREnBSzQ9c7bB_812Jjq1sXpUtnZ8cFaVEywXMBBEHhVcS7IQZBRKjhUE3izA6fAYrDrug-ulWFbU1JPldW_lY3o1d45qDGff3DfEfwATl6TDA</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Han, Ki-Ho</creator><creator>Frazier, A Bruno</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium</title><author>Han, Ki-Ho ; Frazier, A Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-2475174d7c1d3e7101b332673b5ccc69c033b6abed20ad3b28fa6c6d4b03e7073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cell Separation - methods</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Erythrocytes - cytology</topic><topic>Leukocytes - cytology</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Particle Size</topic><topic>Polystyrenes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Ki-Ho</creatorcontrib><creatorcontrib>Frazier, A Bruno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Ki-Ho</au><au>Frazier, A Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>8</volume><issue>7</issue><spage>1079</spage><epage>1086</epage><pages>1079-1086</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>This paper presents lateral-driven continuous dielectrophoretic (DEP) microseparators for separating red and white blood cells suspended in highly conductive dilute whole blood. The continuous microseparators enable the separation of blood cells based on the lateral DEP force generated by a planar interdigitated electrode array placed at an angle to the direction of flow. The simplified line charge model that we developed for the theoretical analysis was verified by comparing it with simulated and measured results. Experimental results showed that the divergent type of microseparator can continuously separate out 87.0% of the red blood cells (RBCs) and 92.1% of the white blood cells (WBCs) from dilute whole blood within 5 min simply by using a 2 MHz, 3 Vp-p AC voltage to create a gradient electric field in a medium that conducts at 17 mS cm(-1). Under the same conditions, the convergent type of microseparator could separate out 93.6% of the RBCs and 76.9% of the WBCs. We have shown that our lateral-driven continuous DEP microseparator design is practical for the continuous separation of blood cells without the need to control the conductivity of the suspension medium, overcoming critical drawbacks of DEP microseparators.</abstract><cop>England</cop><pmid>18584082</pmid><doi>10.1039/b802321b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2008-01, Vol.8 (7), p.1079-1086
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_69262563
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Cell Separation - methods
Electric Conductivity
Electrodes
Erythrocytes - cytology
Leukocytes - cytology
Microfluidic Analytical Techniques - methods
Particle Size
Polystyrenes - chemistry
title Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral-driven%20continuous%20dielectrophoretic%20microseparators%20for%20blood%20cells%20suspended%20in%20a%20highly%20conductive%20medium&rft.jtitle=Lab%20on%20a%20chip&rft.au=Han,%20Ki-Ho&rft.date=2008-01-01&rft.volume=8&rft.issue=7&rft.spage=1079&rft.epage=1086&rft.pages=1079-1086&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b802321b&rft_dat=%3Cproquest_cross%3E34994460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21164390&rft_id=info:pmid/18584082&rfr_iscdi=true