Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium
This paper presents lateral-driven continuous dielectrophoretic (DEP) microseparators for separating red and white blood cells suspended in highly conductive dilute whole blood. The continuous microseparators enable the separation of blood cells based on the lateral DEP force generated by a planar i...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2008-01, Vol.8 (7), p.1079-1086 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1086 |
---|---|
container_issue | 7 |
container_start_page | 1079 |
container_title | Lab on a chip |
container_volume | 8 |
creator | Han, Ki-Ho Frazier, A Bruno |
description | This paper presents lateral-driven continuous dielectrophoretic (DEP) microseparators for separating red and white blood cells suspended in highly conductive dilute whole blood. The continuous microseparators enable the separation of blood cells based on the lateral DEP force generated by a planar interdigitated electrode array placed at an angle to the direction of flow. The simplified line charge model that we developed for the theoretical analysis was verified by comparing it with simulated and measured results. Experimental results showed that the divergent type of microseparator can continuously separate out 87.0% of the red blood cells (RBCs) and 92.1% of the white blood cells (WBCs) from dilute whole blood within 5 min simply by using a 2 MHz, 3 Vp-p AC voltage to create a gradient electric field in a medium that conducts at 17 mS cm(-1). Under the same conditions, the convergent type of microseparator could separate out 93.6% of the RBCs and 76.9% of the WBCs. We have shown that our lateral-driven continuous DEP microseparator design is practical for the continuous separation of blood cells without the need to control the conductivity of the suspension medium, overcoming critical drawbacks of DEP microseparators. |
doi_str_mv | 10.1039/b802321b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69262563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34994460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-2475174d7c1d3e7101b332673b5ccc69c033b6abed20ad3b28fa6c6d4b03e7073</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMo7roK_gLJSbxUk0yatkdZ_IIFL3ou-Vo30jY1SYX997bsqsc9zRweHmbeF6FLSm4pgepOlYQBo-oIzSkvICO0rI7_9qqYobMYPwmhORflKZrRMi85KdkcxZVMNsgmM8F92w5r3yXXDX6I2DjbWJ2C7zc-2OQ0bp0OPtpeBpl8iHjtA1aN9wZr2zQRxyH2tjPWYNdhiTfuY9NsJ6UZdBr1uLXGDe05OlnLJtqL_Vyg98eHt-Vztnp9elnerzINHFLGeJHTgptCUwO2oIQqACYKULnWWlSaACghlTWMSAOKlWsptDBckREnBSzQ9c7bB_812Jjq1sXpUtnZ8cFaVEywXMBBEHhVcS7IQZBRKjhUE3izA6fAYrDrug-ulWFbU1JPldW_lY3o1d45qDGff3DfEfwATl6TDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21164390</pqid></control><display><type>article</type><title>Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Han, Ki-Ho ; Frazier, A Bruno</creator><creatorcontrib>Han, Ki-Ho ; Frazier, A Bruno</creatorcontrib><description>This paper presents lateral-driven continuous dielectrophoretic (DEP) microseparators for separating red and white blood cells suspended in highly conductive dilute whole blood. The continuous microseparators enable the separation of blood cells based on the lateral DEP force generated by a planar interdigitated electrode array placed at an angle to the direction of flow. The simplified line charge model that we developed for the theoretical analysis was verified by comparing it with simulated and measured results. Experimental results showed that the divergent type of microseparator can continuously separate out 87.0% of the red blood cells (RBCs) and 92.1% of the white blood cells (WBCs) from dilute whole blood within 5 min simply by using a 2 MHz, 3 Vp-p AC voltage to create a gradient electric field in a medium that conducts at 17 mS cm(-1). Under the same conditions, the convergent type of microseparator could separate out 93.6% of the RBCs and 76.9% of the WBCs. We have shown that our lateral-driven continuous DEP microseparator design is practical for the continuous separation of blood cells without the need to control the conductivity of the suspension medium, overcoming critical drawbacks of DEP microseparators.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b802321b</identifier><identifier>PMID: 18584082</identifier><language>eng</language><publisher>England</publisher><subject>Cell Separation - methods ; Electric Conductivity ; Electrodes ; Erythrocytes - cytology ; Leukocytes - cytology ; Microfluidic Analytical Techniques - methods ; Particle Size ; Polystyrenes - chemistry</subject><ispartof>Lab on a chip, 2008-01, Vol.8 (7), p.1079-1086</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-2475174d7c1d3e7101b332673b5ccc69c033b6abed20ad3b28fa6c6d4b03e7073</citedby><cites>FETCH-LOGICAL-c343t-2475174d7c1d3e7101b332673b5ccc69c033b6abed20ad3b28fa6c6d4b03e7073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18584082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Ki-Ho</creatorcontrib><creatorcontrib>Frazier, A Bruno</creatorcontrib><title>Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>This paper presents lateral-driven continuous dielectrophoretic (DEP) microseparators for separating red and white blood cells suspended in highly conductive dilute whole blood. The continuous microseparators enable the separation of blood cells based on the lateral DEP force generated by a planar interdigitated electrode array placed at an angle to the direction of flow. The simplified line charge model that we developed for the theoretical analysis was verified by comparing it with simulated and measured results. Experimental results showed that the divergent type of microseparator can continuously separate out 87.0% of the red blood cells (RBCs) and 92.1% of the white blood cells (WBCs) from dilute whole blood within 5 min simply by using a 2 MHz, 3 Vp-p AC voltage to create a gradient electric field in a medium that conducts at 17 mS cm(-1). Under the same conditions, the convergent type of microseparator could separate out 93.6% of the RBCs and 76.9% of the WBCs. We have shown that our lateral-driven continuous DEP microseparator design is practical for the continuous separation of blood cells without the need to control the conductivity of the suspension medium, overcoming critical drawbacks of DEP microseparators.</description><subject>Cell Separation - methods</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Erythrocytes - cytology</subject><subject>Leukocytes - cytology</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Particle Size</subject><subject>Polystyrenes - chemistry</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1LxDAQhoMo7roK_gLJSbxUk0yatkdZ_IIFL3ou-Vo30jY1SYX997bsqsc9zRweHmbeF6FLSm4pgepOlYQBo-oIzSkvICO0rI7_9qqYobMYPwmhORflKZrRMi85KdkcxZVMNsgmM8F92w5r3yXXDX6I2DjbWJ2C7zc-2OQ0bp0OPtpeBpl8iHjtA1aN9wZr2zQRxyH2tjPWYNdhiTfuY9NsJ6UZdBr1uLXGDe05OlnLJtqL_Vyg98eHt-Vztnp9elnerzINHFLGeJHTgptCUwO2oIQqACYKULnWWlSaACghlTWMSAOKlWsptDBckREnBSzQ9c7bB_812Jjq1sXpUtnZ8cFaVEywXMBBEHhVcS7IQZBRKjhUE3izA6fAYrDrug-ulWFbU1JPldW_lY3o1d45qDGff3DfEfwATl6TDA</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Han, Ki-Ho</creator><creator>Frazier, A Bruno</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium</title><author>Han, Ki-Ho ; Frazier, A Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-2475174d7c1d3e7101b332673b5ccc69c033b6abed20ad3b28fa6c6d4b03e7073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cell Separation - methods</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Erythrocytes - cytology</topic><topic>Leukocytes - cytology</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Particle Size</topic><topic>Polystyrenes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Ki-Ho</creatorcontrib><creatorcontrib>Frazier, A Bruno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Ki-Ho</au><au>Frazier, A Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>8</volume><issue>7</issue><spage>1079</spage><epage>1086</epage><pages>1079-1086</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>This paper presents lateral-driven continuous dielectrophoretic (DEP) microseparators for separating red and white blood cells suspended in highly conductive dilute whole blood. The continuous microseparators enable the separation of blood cells based on the lateral DEP force generated by a planar interdigitated electrode array placed at an angle to the direction of flow. The simplified line charge model that we developed for the theoretical analysis was verified by comparing it with simulated and measured results. Experimental results showed that the divergent type of microseparator can continuously separate out 87.0% of the red blood cells (RBCs) and 92.1% of the white blood cells (WBCs) from dilute whole blood within 5 min simply by using a 2 MHz, 3 Vp-p AC voltage to create a gradient electric field in a medium that conducts at 17 mS cm(-1). Under the same conditions, the convergent type of microseparator could separate out 93.6% of the RBCs and 76.9% of the WBCs. We have shown that our lateral-driven continuous DEP microseparator design is practical for the continuous separation of blood cells without the need to control the conductivity of the suspension medium, overcoming critical drawbacks of DEP microseparators.</abstract><cop>England</cop><pmid>18584082</pmid><doi>10.1039/b802321b</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2008-01, Vol.8 (7), p.1079-1086 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_69262563 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Cell Separation - methods Electric Conductivity Electrodes Erythrocytes - cytology Leukocytes - cytology Microfluidic Analytical Techniques - methods Particle Size Polystyrenes - chemistry |
title | Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral-driven%20continuous%20dielectrophoretic%20microseparators%20for%20blood%20cells%20suspended%20in%20a%20highly%20conductive%20medium&rft.jtitle=Lab%20on%20a%20chip&rft.au=Han,%20Ki-Ho&rft.date=2008-01-01&rft.volume=8&rft.issue=7&rft.spage=1079&rft.epage=1086&rft.pages=1079-1086&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b802321b&rft_dat=%3Cproquest_cross%3E34994460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21164390&rft_id=info:pmid/18584082&rfr_iscdi=true |