A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound

Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young’s modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in medicine & biology 1998-11, Vol.24 (9), p.1325-1335
Hauptverfasser: Brands, Peter J., Willigers, Jean M., Ledoux, Léon A.F., Reneman, Robert S., Hoeks, Arnold P.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1335
container_issue 9
container_start_page 1325
container_title Ultrasound in medicine & biology
container_volume 24
creator Brands, Peter J.
Willigers, Jean M.
Ledoux, Léon A.F.
Reneman, Robert S.
Hoeks, Arnold P.G.
description Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young’s modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a function of time, and local wall thickness. However, to assess vessel wall properties of the carotid artery, for example, the pulse pressure in the brachial artery still must be used as a substitute for local pulse pressure. The assessment of local pulse wave velocity as described in the present article provides a direct estimate of local vessel wall properties (distensibility, compliance, and Young’s modulus) and, in combination with the relative change in artery cross-sectional area, an estimate of the local pulse pressure. The local pulse wave velocity is obtained by processing radio frequency ultrasound signals acquired simultaneously along two M-lines spaced at a known distance along the artery. A full derivation and mathematical description of the method to assess local pulse wave velocity, using the temporal and longitudinal gradients of the change in diameter, are presented. A performance evaluation of the method was carried out by means of experiments in an elastic tube under pulsatile pressure conditions. It is concluded that, in a phantom set-up, the assessed local pulse wave velocity provides reliable estimates for local distensibility.
doi_str_mv 10.1016/S0301-5629(98)00126-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69253564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562998001264</els_id><sourcerecordid>380462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-c48c2951bc97fef74fe6aa71b31c5bd70994cae510dfcf61cfbde583e302a8473</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaDZJf0KLDiUkByeSZcnWqYSQL1jIIQnkJmR5RFW80laSt-y_j_aDNrdcRjB65p3hfRH6RskFJVRcPhFGaMVFLc9kd04IrUXVfEIz2rWyqiV9_Yxm_5BDdJTSb0JIK1j7BR1SwjouOZ8hdYV98M6vdHIrwAvIv8KAc8CQslvoDHg5jQnwX11-VzAG4_IaO491zBAdJFxaehzXuF-Xae0TDhZPY446hckPJ-jA6iLwdf8eo5fbm-fr-2r-ePdwfTWvTFPTXGpnaslpb2RrwbaNBaF1S3tGDe-HlkjZGA2cksEaK6ix_QC8Y8BIrbumZcfodKe7jOHPVI5XC5cMjKP2EKakhKw546L5EKwpK3JMFpDvQBNDShGsWsbiSFwrStQmArWNQG38VbJT2wjUZsH3_YKpX8DwbmrneQF-7AGdinU2am9c-s8JxpuGFOznDoNi28pBVMk48AYGF8FkNQT3wSVv4dSkWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21347339</pqid></control><display><type>article</type><title>A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Brands, Peter J. ; Willigers, Jean M. ; Ledoux, Léon A.F. ; Reneman, Robert S. ; Hoeks, Arnold P.G.</creator><creatorcontrib>Brands, Peter J. ; Willigers, Jean M. ; Ledoux, Léon A.F. ; Reneman, Robert S. ; Hoeks, Arnold P.G.</creatorcontrib><description>Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young’s modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a function of time, and local wall thickness. However, to assess vessel wall properties of the carotid artery, for example, the pulse pressure in the brachial artery still must be used as a substitute for local pulse pressure. The assessment of local pulse wave velocity as described in the present article provides a direct estimate of local vessel wall properties (distensibility, compliance, and Young’s modulus) and, in combination with the relative change in artery cross-sectional area, an estimate of the local pulse pressure. The local pulse wave velocity is obtained by processing radio frequency ultrasound signals acquired simultaneously along two M-lines spaced at a known distance along the artery. A full derivation and mathematical description of the method to assess local pulse wave velocity, using the temporal and longitudinal gradients of the change in diameter, are presented. A performance evaluation of the method was carried out by means of experiments in an elastic tube under pulsatile pressure conditions. It is concluded that, in a phantom set-up, the assessed local pulse wave velocity provides reliable estimates for local distensibility.</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/S0301-5629(98)00126-4</identifier><identifier>PMID: 10385955</identifier><identifier>CODEN: USMBA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Acoustic waves ; Analytic signals ; Arteries - diagnostic imaging ; Biological and medical sciences ; Blood Flow Velocity - physiology ; Blood vessels ; Cardiovascular system ; Cross-correlation ; Estimation ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Local distensibility ; Mathematical models ; Medical sciences ; Models, Cardiovascular ; Noninvasive medical procedures ; Pulse ; Pulse wave velocity ; Signal processing ; Signal Processing, Computer-Assisted ; Spatial Doppler frequency ; Ultrasonic investigative techniques ; Ultrasonography - methods ; Ultrasonography, Doppler - methods ; Ultrasound ; Velocity</subject><ispartof>Ultrasound in medicine &amp; biology, 1998-11, Vol.24 (9), p.1325-1335</ispartof><rights>1998 World Federation for Ultrasound in Medicine &amp; Biology</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-c48c2951bc97fef74fe6aa71b31c5bd70994cae510dfcf61cfbde583e302a8473</citedby><cites>FETCH-LOGICAL-c421t-c48c2951bc97fef74fe6aa71b31c5bd70994cae510dfcf61cfbde583e302a8473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0301-5629(98)00126-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1635440$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10385955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brands, Peter J.</creatorcontrib><creatorcontrib>Willigers, Jean M.</creatorcontrib><creatorcontrib>Ledoux, Léon A.F.</creatorcontrib><creatorcontrib>Reneman, Robert S.</creatorcontrib><creatorcontrib>Hoeks, Arnold P.G.</creatorcontrib><title>A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound</title><title>Ultrasound in medicine &amp; biology</title><addtitle>Ultrasound Med Biol</addtitle><description>Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young’s modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a function of time, and local wall thickness. However, to assess vessel wall properties of the carotid artery, for example, the pulse pressure in the brachial artery still must be used as a substitute for local pulse pressure. The assessment of local pulse wave velocity as described in the present article provides a direct estimate of local vessel wall properties (distensibility, compliance, and Young’s modulus) and, in combination with the relative change in artery cross-sectional area, an estimate of the local pulse pressure. The local pulse wave velocity is obtained by processing radio frequency ultrasound signals acquired simultaneously along two M-lines spaced at a known distance along the artery. A full derivation and mathematical description of the method to assess local pulse wave velocity, using the temporal and longitudinal gradients of the change in diameter, are presented. A performance evaluation of the method was carried out by means of experiments in an elastic tube under pulsatile pressure conditions. It is concluded that, in a phantom set-up, the assessed local pulse wave velocity provides reliable estimates for local distensibility.</description><subject>Acoustic waves</subject><subject>Analytic signals</subject><subject>Arteries - diagnostic imaging</subject><subject>Biological and medical sciences</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood vessels</subject><subject>Cardiovascular system</subject><subject>Cross-correlation</subject><subject>Estimation</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Local distensibility</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>Models, Cardiovascular</subject><subject>Noninvasive medical procedures</subject><subject>Pulse</subject><subject>Pulse wave velocity</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Spatial Doppler frequency</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonography - methods</subject><subject>Ultrasonography, Doppler - methods</subject><subject>Ultrasound</subject><subject>Velocity</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVpaDZJf0KLDiUkByeSZcnWqYSQL1jIIQnkJmR5RFW80laSt-y_j_aDNrdcRjB65p3hfRH6RskFJVRcPhFGaMVFLc9kd04IrUXVfEIz2rWyqiV9_Yxm_5BDdJTSb0JIK1j7BR1SwjouOZ8hdYV98M6vdHIrwAvIv8KAc8CQslvoDHg5jQnwX11-VzAG4_IaO491zBAdJFxaehzXuF-Xae0TDhZPY446hckPJ-jA6iLwdf8eo5fbm-fr-2r-ePdwfTWvTFPTXGpnaslpb2RrwbaNBaF1S3tGDe-HlkjZGA2cksEaK6ix_QC8Y8BIrbumZcfodKe7jOHPVI5XC5cMjKP2EKakhKw546L5EKwpK3JMFpDvQBNDShGsWsbiSFwrStQmArWNQG38VbJT2wjUZsH3_YKpX8DwbmrneQF-7AGdinU2am9c-s8JxpuGFOznDoNi28pBVMk48AYGF8FkNQT3wSVv4dSkWQ</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Brands, Peter J.</creator><creator>Willigers, Jean M.</creator><creator>Ledoux, Léon A.F.</creator><creator>Reneman, Robert S.</creator><creator>Hoeks, Arnold P.G.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19981101</creationdate><title>A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound</title><author>Brands, Peter J. ; Willigers, Jean M. ; Ledoux, Léon A.F. ; Reneman, Robert S. ; Hoeks, Arnold P.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-c48c2951bc97fef74fe6aa71b31c5bd70994cae510dfcf61cfbde583e302a8473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Acoustic waves</topic><topic>Analytic signals</topic><topic>Arteries - diagnostic imaging</topic><topic>Biological and medical sciences</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood vessels</topic><topic>Cardiovascular system</topic><topic>Cross-correlation</topic><topic>Estimation</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Local distensibility</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>Models, Cardiovascular</topic><topic>Noninvasive medical procedures</topic><topic>Pulse</topic><topic>Pulse wave velocity</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Spatial Doppler frequency</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonography - methods</topic><topic>Ultrasonography, Doppler - methods</topic><topic>Ultrasound</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brands, Peter J.</creatorcontrib><creatorcontrib>Willigers, Jean M.</creatorcontrib><creatorcontrib>Ledoux, Léon A.F.</creatorcontrib><creatorcontrib>Reneman, Robert S.</creatorcontrib><creatorcontrib>Hoeks, Arnold P.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brands, Peter J.</au><au>Willigers, Jean M.</au><au>Ledoux, Léon A.F.</au><au>Reneman, Robert S.</au><au>Hoeks, Arnold P.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound</atitle><jtitle>Ultrasound in medicine &amp; biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>1998-11-01</date><risdate>1998</risdate><volume>24</volume><issue>9</issue><spage>1325</spage><epage>1335</epage><pages>1325-1335</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><coden>USMBA3</coden><abstract>Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young’s modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a function of time, and local wall thickness. However, to assess vessel wall properties of the carotid artery, for example, the pulse pressure in the brachial artery still must be used as a substitute for local pulse pressure. The assessment of local pulse wave velocity as described in the present article provides a direct estimate of local vessel wall properties (distensibility, compliance, and Young’s modulus) and, in combination with the relative change in artery cross-sectional area, an estimate of the local pulse pressure. The local pulse wave velocity is obtained by processing radio frequency ultrasound signals acquired simultaneously along two M-lines spaced at a known distance along the artery. A full derivation and mathematical description of the method to assess local pulse wave velocity, using the temporal and longitudinal gradients of the change in diameter, are presented. A performance evaluation of the method was carried out by means of experiments in an elastic tube under pulsatile pressure conditions. It is concluded that, in a phantom set-up, the assessed local pulse wave velocity provides reliable estimates for local distensibility.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>10385955</pmid><doi>10.1016/S0301-5629(98)00126-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-5629
ispartof Ultrasound in medicine & biology, 1998-11, Vol.24 (9), p.1325-1335
issn 0301-5629
1879-291X
language eng
recordid cdi_proquest_miscellaneous_69253564
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acoustic waves
Analytic signals
Arteries - diagnostic imaging
Biological and medical sciences
Blood Flow Velocity - physiology
Blood vessels
Cardiovascular system
Cross-correlation
Estimation
Humans
Investigative techniques, diagnostic techniques (general aspects)
Local distensibility
Mathematical models
Medical sciences
Models, Cardiovascular
Noninvasive medical procedures
Pulse
Pulse wave velocity
Signal processing
Signal Processing, Computer-Assisted
Spatial Doppler frequency
Ultrasonic investigative techniques
Ultrasonography - methods
Ultrasonography, Doppler - methods
Ultrasound
Velocity
title A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20noninvasive%20method%20to%20estimate%20pulse%20wave%20velocity%20in%20arteries%20locally%20by%20means%20of%20ultrasound&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Brands,%20Peter%20J.&rft.date=1998-11-01&rft.volume=24&rft.issue=9&rft.spage=1325&rft.epage=1335&rft.pages=1325-1335&rft.issn=0301-5629&rft.eissn=1879-291X&rft.coden=USMBA3&rft_id=info:doi/10.1016/S0301-5629(98)00126-4&rft_dat=%3Cproquest_cross%3E380462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21347339&rft_id=info:pmid/10385955&rft_els_id=S0301562998001264&rfr_iscdi=true