A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound
Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young’s modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 1998-11, Vol.24 (9), p.1325-1335 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1335 |
---|---|
container_issue | 9 |
container_start_page | 1325 |
container_title | Ultrasound in medicine & biology |
container_volume | 24 |
creator | Brands, Peter J. Willigers, Jean M. Ledoux, Léon A.F. Reneman, Robert S. Hoeks, Arnold P.G. |
description | Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young’s modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a function of time, and local wall thickness. However, to assess vessel wall properties of the carotid artery, for example, the pulse pressure in the brachial artery still must be used as a substitute for local pulse pressure. The assessment of local pulse wave velocity as described in the present article provides a direct estimate of local vessel wall properties (distensibility, compliance, and Young’s modulus) and, in combination with the relative change in artery cross-sectional area, an estimate of the local pulse pressure. The local pulse wave velocity is obtained by processing radio frequency ultrasound signals acquired simultaneously along two M-lines spaced at a known distance along the artery. A full derivation and mathematical description of the method to assess local pulse wave velocity, using the temporal and longitudinal gradients of the change in diameter, are presented. A performance evaluation of the method was carried out by means of experiments in an elastic tube under pulsatile pressure conditions. It is concluded that, in a phantom set-up, the assessed local pulse wave velocity provides reliable estimates for local distensibility. |
doi_str_mv | 10.1016/S0301-5629(98)00126-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69253564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562998001264</els_id><sourcerecordid>380462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-c48c2951bc97fef74fe6aa71b31c5bd70994cae510dfcf61cfbde583e302a8473</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaDZJf0KLDiUkByeSZcnWqYSQL1jIIQnkJmR5RFW80laSt-y_j_aDNrdcRjB65p3hfRH6RskFJVRcPhFGaMVFLc9kd04IrUXVfEIz2rWyqiV9_Yxm_5BDdJTSb0JIK1j7BR1SwjouOZ8hdYV98M6vdHIrwAvIv8KAc8CQslvoDHg5jQnwX11-VzAG4_IaO491zBAdJFxaehzXuF-Xae0TDhZPY446hckPJ-jA6iLwdf8eo5fbm-fr-2r-ePdwfTWvTFPTXGpnaslpb2RrwbaNBaF1S3tGDe-HlkjZGA2cksEaK6ix_QC8Y8BIrbumZcfodKe7jOHPVI5XC5cMjKP2EKakhKw546L5EKwpK3JMFpDvQBNDShGsWsbiSFwrStQmArWNQG38VbJT2wjUZsH3_YKpX8DwbmrneQF-7AGdinU2am9c-s8JxpuGFOznDoNi28pBVMk48AYGF8FkNQT3wSVv4dSkWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21347339</pqid></control><display><type>article</type><title>A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Brands, Peter J. ; Willigers, Jean M. ; Ledoux, Léon A.F. ; Reneman, Robert S. ; Hoeks, Arnold P.G.</creator><creatorcontrib>Brands, Peter J. ; Willigers, Jean M. ; Ledoux, Léon A.F. ; Reneman, Robert S. ; Hoeks, Arnold P.G.</creatorcontrib><description>Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young’s modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a function of time, and local wall thickness. However, to assess vessel wall properties of the carotid artery, for example, the pulse pressure in the brachial artery still must be used as a substitute for local pulse pressure. The assessment of local pulse wave velocity as described in the present article provides a direct estimate of local vessel wall properties (distensibility, compliance, and Young’s modulus) and, in combination with the relative change in artery cross-sectional area, an estimate of the local pulse pressure. The local pulse wave velocity is obtained by processing radio frequency ultrasound signals acquired simultaneously along two M-lines spaced at a known distance along the artery. A full derivation and mathematical description of the method to assess local pulse wave velocity, using the temporal and longitudinal gradients of the change in diameter, are presented. A performance evaluation of the method was carried out by means of experiments in an elastic tube under pulsatile pressure conditions. It is concluded that, in a phantom set-up, the assessed local pulse wave velocity provides reliable estimates for local distensibility.</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/S0301-5629(98)00126-4</identifier><identifier>PMID: 10385955</identifier><identifier>CODEN: USMBA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Acoustic waves ; Analytic signals ; Arteries - diagnostic imaging ; Biological and medical sciences ; Blood Flow Velocity - physiology ; Blood vessels ; Cardiovascular system ; Cross-correlation ; Estimation ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Local distensibility ; Mathematical models ; Medical sciences ; Models, Cardiovascular ; Noninvasive medical procedures ; Pulse ; Pulse wave velocity ; Signal processing ; Signal Processing, Computer-Assisted ; Spatial Doppler frequency ; Ultrasonic investigative techniques ; Ultrasonography - methods ; Ultrasonography, Doppler - methods ; Ultrasound ; Velocity</subject><ispartof>Ultrasound in medicine & biology, 1998-11, Vol.24 (9), p.1325-1335</ispartof><rights>1998 World Federation for Ultrasound in Medicine & Biology</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-c48c2951bc97fef74fe6aa71b31c5bd70994cae510dfcf61cfbde583e302a8473</citedby><cites>FETCH-LOGICAL-c421t-c48c2951bc97fef74fe6aa71b31c5bd70994cae510dfcf61cfbde583e302a8473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0301-5629(98)00126-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1635440$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10385955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brands, Peter J.</creatorcontrib><creatorcontrib>Willigers, Jean M.</creatorcontrib><creatorcontrib>Ledoux, Léon A.F.</creatorcontrib><creatorcontrib>Reneman, Robert S.</creatorcontrib><creatorcontrib>Hoeks, Arnold P.G.</creatorcontrib><title>A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound</title><title>Ultrasound in medicine & biology</title><addtitle>Ultrasound Med Biol</addtitle><description>Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young’s modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a function of time, and local wall thickness. However, to assess vessel wall properties of the carotid artery, for example, the pulse pressure in the brachial artery still must be used as a substitute for local pulse pressure. The assessment of local pulse wave velocity as described in the present article provides a direct estimate of local vessel wall properties (distensibility, compliance, and Young’s modulus) and, in combination with the relative change in artery cross-sectional area, an estimate of the local pulse pressure. The local pulse wave velocity is obtained by processing radio frequency ultrasound signals acquired simultaneously along two M-lines spaced at a known distance along the artery. A full derivation and mathematical description of the method to assess local pulse wave velocity, using the temporal and longitudinal gradients of the change in diameter, are presented. A performance evaluation of the method was carried out by means of experiments in an elastic tube under pulsatile pressure conditions. It is concluded that, in a phantom set-up, the assessed local pulse wave velocity provides reliable estimates for local distensibility.</description><subject>Acoustic waves</subject><subject>Analytic signals</subject><subject>Arteries - diagnostic imaging</subject><subject>Biological and medical sciences</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood vessels</subject><subject>Cardiovascular system</subject><subject>Cross-correlation</subject><subject>Estimation</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Local distensibility</subject><subject>Mathematical models</subject><subject>Medical sciences</subject><subject>Models, Cardiovascular</subject><subject>Noninvasive medical procedures</subject><subject>Pulse</subject><subject>Pulse wave velocity</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Spatial Doppler frequency</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonography - methods</subject><subject>Ultrasonography, Doppler - methods</subject><subject>Ultrasound</subject><subject>Velocity</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVpaDZJf0KLDiUkByeSZcnWqYSQL1jIIQnkJmR5RFW80laSt-y_j_aDNrdcRjB65p3hfRH6RskFJVRcPhFGaMVFLc9kd04IrUXVfEIz2rWyqiV9_Yxm_5BDdJTSb0JIK1j7BR1SwjouOZ8hdYV98M6vdHIrwAvIv8KAc8CQslvoDHg5jQnwX11-VzAG4_IaO491zBAdJFxaehzXuF-Xae0TDhZPY446hckPJ-jA6iLwdf8eo5fbm-fr-2r-ePdwfTWvTFPTXGpnaslpb2RrwbaNBaF1S3tGDe-HlkjZGA2cksEaK6ix_QC8Y8BIrbumZcfodKe7jOHPVI5XC5cMjKP2EKakhKw546L5EKwpK3JMFpDvQBNDShGsWsbiSFwrStQmArWNQG38VbJT2wjUZsH3_YKpX8DwbmrneQF-7AGdinU2am9c-s8JxpuGFOznDoNi28pBVMk48AYGF8FkNQT3wSVv4dSkWQ</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Brands, Peter J.</creator><creator>Willigers, Jean M.</creator><creator>Ledoux, Léon A.F.</creator><creator>Reneman, Robert S.</creator><creator>Hoeks, Arnold P.G.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19981101</creationdate><title>A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound</title><author>Brands, Peter J. ; Willigers, Jean M. ; Ledoux, Léon A.F. ; Reneman, Robert S. ; Hoeks, Arnold P.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-c48c2951bc97fef74fe6aa71b31c5bd70994cae510dfcf61cfbde583e302a8473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Acoustic waves</topic><topic>Analytic signals</topic><topic>Arteries - diagnostic imaging</topic><topic>Biological and medical sciences</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood vessels</topic><topic>Cardiovascular system</topic><topic>Cross-correlation</topic><topic>Estimation</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Local distensibility</topic><topic>Mathematical models</topic><topic>Medical sciences</topic><topic>Models, Cardiovascular</topic><topic>Noninvasive medical procedures</topic><topic>Pulse</topic><topic>Pulse wave velocity</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Spatial Doppler frequency</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonography - methods</topic><topic>Ultrasonography, Doppler - methods</topic><topic>Ultrasound</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brands, Peter J.</creatorcontrib><creatorcontrib>Willigers, Jean M.</creatorcontrib><creatorcontrib>Ledoux, Léon A.F.</creatorcontrib><creatorcontrib>Reneman, Robert S.</creatorcontrib><creatorcontrib>Hoeks, Arnold P.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brands, Peter J.</au><au>Willigers, Jean M.</au><au>Ledoux, Léon A.F.</au><au>Reneman, Robert S.</au><au>Hoeks, Arnold P.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound</atitle><jtitle>Ultrasound in medicine & biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>1998-11-01</date><risdate>1998</risdate><volume>24</volume><issue>9</issue><spage>1325</spage><epage>1335</epage><pages>1325-1335</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><coden>USMBA3</coden><abstract>Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young’s modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a function of time, and local wall thickness. However, to assess vessel wall properties of the carotid artery, for example, the pulse pressure in the brachial artery still must be used as a substitute for local pulse pressure. The assessment of local pulse wave velocity as described in the present article provides a direct estimate of local vessel wall properties (distensibility, compliance, and Young’s modulus) and, in combination with the relative change in artery cross-sectional area, an estimate of the local pulse pressure. The local pulse wave velocity is obtained by processing radio frequency ultrasound signals acquired simultaneously along two M-lines spaced at a known distance along the artery. A full derivation and mathematical description of the method to assess local pulse wave velocity, using the temporal and longitudinal gradients of the change in diameter, are presented. A performance evaluation of the method was carried out by means of experiments in an elastic tube under pulsatile pressure conditions. It is concluded that, in a phantom set-up, the assessed local pulse wave velocity provides reliable estimates for local distensibility.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>10385955</pmid><doi>10.1016/S0301-5629(98)00126-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-5629 |
ispartof | Ultrasound in medicine & biology, 1998-11, Vol.24 (9), p.1325-1335 |
issn | 0301-5629 1879-291X |
language | eng |
recordid | cdi_proquest_miscellaneous_69253564 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Acoustic waves Analytic signals Arteries - diagnostic imaging Biological and medical sciences Blood Flow Velocity - physiology Blood vessels Cardiovascular system Cross-correlation Estimation Humans Investigative techniques, diagnostic techniques (general aspects) Local distensibility Mathematical models Medical sciences Models, Cardiovascular Noninvasive medical procedures Pulse Pulse wave velocity Signal processing Signal Processing, Computer-Assisted Spatial Doppler frequency Ultrasonic investigative techniques Ultrasonography - methods Ultrasonography, Doppler - methods Ultrasound Velocity |
title | A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20noninvasive%20method%20to%20estimate%20pulse%20wave%20velocity%20in%20arteries%20locally%20by%20means%20of%20ultrasound&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Brands,%20Peter%20J.&rft.date=1998-11-01&rft.volume=24&rft.issue=9&rft.spage=1325&rft.epage=1335&rft.pages=1325-1335&rft.issn=0301-5629&rft.eissn=1879-291X&rft.coden=USMBA3&rft_id=info:doi/10.1016/S0301-5629(98)00126-4&rft_dat=%3Cproquest_cross%3E380462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21347339&rft_id=info:pmid/10385955&rft_els_id=S0301562998001264&rfr_iscdi=true |