Impurities in Commercial Phytantriol Significantly Alter Its Lyotropic Liquid-Crystalline Phase Behavior

The lyotropic liquid-crystalline phase behavior of phytantriol is receiving increasing interest in the literature as a result of similarities with glyceryl monooleate, despite its very different molecular structure. Some differences in the phase-transition temperature for the bicontinuous cubic to r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2008-07, Vol.24 (13), p.6998-7003
Hauptverfasser: Dong, Yao-Da, Dong, Aurelia W, Larson, Ian, Rappolt, Michael, Amenitsch, Heinz, Hanley, Tracey, Boyd, Ben J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7003
container_issue 13
container_start_page 6998
container_title Langmuir
container_volume 24
creator Dong, Yao-Da
Dong, Aurelia W
Larson, Ian
Rappolt, Michael
Amenitsch, Heinz
Hanley, Tracey
Boyd, Ben J
description The lyotropic liquid-crystalline phase behavior of phytantriol is receiving increasing interest in the literature as a result of similarities with glyceryl monooleate, despite its very different molecular structure. Some differences in the phase-transition temperature for the bicontinuous cubic to reverse hexagonal phase have been reported in the literature. In this study, we have investigated the influence that the commercial source and hence the purity has on the lyotropic phase behavior of phytantriol. Suppression of the phase-transition temperatures (by up to 15 °C for the bicontinuous cubic to reverse hexagonal phase transition) is apparent with lower-purity phytantriol. In addition, the composition boundaries were also found to depend significantly on the source and purity of phytantriol, with the bicontinuous cubic phase + excess water boundary occurring at a water content above that reported previously (i.e., >5% higher). Both the temperature and compositional changes in phase boundaries have significant implications on the use of these materials and highlight the impact that subtle levels of impurities can play in the phase behavior of these types of materials.
doi_str_mv 10.1021/la8005579
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69251620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69251620</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-c52ca39890524f573d6e8bc07f649bfe9added041fd032c691f1952b31320e443</originalsourceid><addsrcrecordid>eNpt0c1uEzEUBWALgWhaWPACyBuQWAxc_43HyzaiJVIQFQ2IneV4PMTFM05tD2LenkGJ0g0r68qfjq7ORegVgfcEKPkQTAMghFRP0IIICpVoqHyKFiA5qySv2Rk6z_keABTj6jk6I42glAtYoN2q34_JF-8y9gNexr53yXoT8O1uKmYoyceA7_zPwXfeznOY8GUoLuFVyXg9xZLi3lu89g-jb6tlmnIxIfjBzQEmO3zldua3j-kFetaZkN3L43uBvl1_3Cw_VesvN6vl5boynMtSWUGtYapRICjvhGRt7ZqtBdnVXG07p0zbuhY46Vpg1NaKdEQJumWEUXCcswv09pC7T_FhdLno3mfrQjCDi2PWtaKC1BRm-O4AbYo5J9fpffK9SZMmoP_Vqk-1zvb1MXTc9q59lMceZ_DmCEy2JnTJDNbnk6MwHwGYmF11cD4X9-f0b9IvXUsmhd7c3umv8lp-3vzg-vtjrrFZ38cxDXN3_1nwL638mxE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69251620</pqid></control><display><type>article</type><title>Impurities in Commercial Phytantriol Significantly Alter Its Lyotropic Liquid-Crystalline Phase Behavior</title><source>MEDLINE</source><source>ACS Publications</source><creator>Dong, Yao-Da ; Dong, Aurelia W ; Larson, Ian ; Rappolt, Michael ; Amenitsch, Heinz ; Hanley, Tracey ; Boyd, Ben J</creator><creatorcontrib>Dong, Yao-Da ; Dong, Aurelia W ; Larson, Ian ; Rappolt, Michael ; Amenitsch, Heinz ; Hanley, Tracey ; Boyd, Ben J</creatorcontrib><description>The lyotropic liquid-crystalline phase behavior of phytantriol is receiving increasing interest in the literature as a result of similarities with glyceryl monooleate, despite its very different molecular structure. Some differences in the phase-transition temperature for the bicontinuous cubic to reverse hexagonal phase have been reported in the literature. In this study, we have investigated the influence that the commercial source and hence the purity has on the lyotropic phase behavior of phytantriol. Suppression of the phase-transition temperatures (by up to 15 °C for the bicontinuous cubic to reverse hexagonal phase transition) is apparent with lower-purity phytantriol. In addition, the composition boundaries were also found to depend significantly on the source and purity of phytantriol, with the bicontinuous cubic phase + excess water boundary occurring at a water content above that reported previously (i.e., &gt;5% higher). Both the temperature and compositional changes in phase boundaries have significant implications on the use of these materials and highlight the impact that subtle levels of impurities can play in the phase behavior of these types of materials.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la8005579</identifier><identifier>PMID: 18522450</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Calorimetry, Differential Scanning ; Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; Fatty Alcohols - chemistry ; General and physical chemistry ; Liquid Crystals - chemistry ; Mass Spectrometry ; Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites ; Molecular Structure ; Phase Transition ; Surface physical chemistry ; Temperature ; Water - chemistry</subject><ispartof>Langmuir, 2008-07, Vol.24 (13), p.6998-7003</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-c52ca39890524f573d6e8bc07f649bfe9added041fd032c691f1952b31320e443</citedby><cites>FETCH-LOGICAL-a447t-c52ca39890524f573d6e8bc07f649bfe9added041fd032c691f1952b31320e443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la8005579$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la8005579$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20463035$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18522450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Yao-Da</creatorcontrib><creatorcontrib>Dong, Aurelia W</creatorcontrib><creatorcontrib>Larson, Ian</creatorcontrib><creatorcontrib>Rappolt, Michael</creatorcontrib><creatorcontrib>Amenitsch, Heinz</creatorcontrib><creatorcontrib>Hanley, Tracey</creatorcontrib><creatorcontrib>Boyd, Ben J</creatorcontrib><title>Impurities in Commercial Phytantriol Significantly Alter Its Lyotropic Liquid-Crystalline Phase Behavior</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The lyotropic liquid-crystalline phase behavior of phytantriol is receiving increasing interest in the literature as a result of similarities with glyceryl monooleate, despite its very different molecular structure. Some differences in the phase-transition temperature for the bicontinuous cubic to reverse hexagonal phase have been reported in the literature. In this study, we have investigated the influence that the commercial source and hence the purity has on the lyotropic phase behavior of phytantriol. Suppression of the phase-transition temperatures (by up to 15 °C for the bicontinuous cubic to reverse hexagonal phase transition) is apparent with lower-purity phytantriol. In addition, the composition boundaries were also found to depend significantly on the source and purity of phytantriol, with the bicontinuous cubic phase + excess water boundary occurring at a water content above that reported previously (i.e., &gt;5% higher). Both the temperature and compositional changes in phase boundaries have significant implications on the use of these materials and highlight the impact that subtle levels of impurities can play in the phase behavior of these types of materials.</description><subject>Calorimetry, Differential Scanning</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>Fatty Alcohols - chemistry</subject><subject>General and physical chemistry</subject><subject>Liquid Crystals - chemistry</subject><subject>Mass Spectrometry</subject><subject>Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites</subject><subject>Molecular Structure</subject><subject>Phase Transition</subject><subject>Surface physical chemistry</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0c1uEzEUBWALgWhaWPACyBuQWAxc_43HyzaiJVIQFQ2IneV4PMTFM05tD2LenkGJ0g0r68qfjq7ORegVgfcEKPkQTAMghFRP0IIICpVoqHyKFiA5qySv2Rk6z_keABTj6jk6I42glAtYoN2q34_JF-8y9gNexr53yXoT8O1uKmYoyceA7_zPwXfeznOY8GUoLuFVyXg9xZLi3lu89g-jb6tlmnIxIfjBzQEmO3zldua3j-kFetaZkN3L43uBvl1_3Cw_VesvN6vl5boynMtSWUGtYapRICjvhGRt7ZqtBdnVXG07p0zbuhY46Vpg1NaKdEQJumWEUXCcswv09pC7T_FhdLno3mfrQjCDi2PWtaKC1BRm-O4AbYo5J9fpffK9SZMmoP_Vqk-1zvb1MXTc9q59lMceZ_DmCEy2JnTJDNbnk6MwHwGYmF11cD4X9-f0b9IvXUsmhd7c3umv8lp-3vzg-vtjrrFZ38cxDXN3_1nwL638mxE</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Dong, Yao-Da</creator><creator>Dong, Aurelia W</creator><creator>Larson, Ian</creator><creator>Rappolt, Michael</creator><creator>Amenitsch, Heinz</creator><creator>Hanley, Tracey</creator><creator>Boyd, Ben J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080701</creationdate><title>Impurities in Commercial Phytantriol Significantly Alter Its Lyotropic Liquid-Crystalline Phase Behavior</title><author>Dong, Yao-Da ; Dong, Aurelia W ; Larson, Ian ; Rappolt, Michael ; Amenitsch, Heinz ; Hanley, Tracey ; Boyd, Ben J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-c52ca39890524f573d6e8bc07f649bfe9added041fd032c691f1952b31320e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Calorimetry, Differential Scanning</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>Fatty Alcohols - chemistry</topic><topic>General and physical chemistry</topic><topic>Liquid Crystals - chemistry</topic><topic>Mass Spectrometry</topic><topic>Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites</topic><topic>Molecular Structure</topic><topic>Phase Transition</topic><topic>Surface physical chemistry</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yao-Da</creatorcontrib><creatorcontrib>Dong, Aurelia W</creatorcontrib><creatorcontrib>Larson, Ian</creatorcontrib><creatorcontrib>Rappolt, Michael</creatorcontrib><creatorcontrib>Amenitsch, Heinz</creatorcontrib><creatorcontrib>Hanley, Tracey</creatorcontrib><creatorcontrib>Boyd, Ben J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yao-Da</au><au>Dong, Aurelia W</au><au>Larson, Ian</au><au>Rappolt, Michael</au><au>Amenitsch, Heinz</au><au>Hanley, Tracey</au><au>Boyd, Ben J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impurities in Commercial Phytantriol Significantly Alter Its Lyotropic Liquid-Crystalline Phase Behavior</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>24</volume><issue>13</issue><spage>6998</spage><epage>7003</epage><pages>6998-7003</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The lyotropic liquid-crystalline phase behavior of phytantriol is receiving increasing interest in the literature as a result of similarities with glyceryl monooleate, despite its very different molecular structure. Some differences in the phase-transition temperature for the bicontinuous cubic to reverse hexagonal phase have been reported in the literature. In this study, we have investigated the influence that the commercial source and hence the purity has on the lyotropic phase behavior of phytantriol. Suppression of the phase-transition temperatures (by up to 15 °C for the bicontinuous cubic to reverse hexagonal phase transition) is apparent with lower-purity phytantriol. In addition, the composition boundaries were also found to depend significantly on the source and purity of phytantriol, with the bicontinuous cubic phase + excess water boundary occurring at a water content above that reported previously (i.e., &gt;5% higher). Both the temperature and compositional changes in phase boundaries have significant implications on the use of these materials and highlight the impact that subtle levels of impurities can play in the phase behavior of these types of materials.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18522450</pmid><doi>10.1021/la8005579</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2008-07, Vol.24 (13), p.6998-7003
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_69251620
source MEDLINE; ACS Publications
subjects Calorimetry, Differential Scanning
Chemistry
Colloidal state and disperse state
Exact sciences and technology
Fatty Alcohols - chemistry
General and physical chemistry
Liquid Crystals - chemistry
Mass Spectrometry
Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites
Molecular Structure
Phase Transition
Surface physical chemistry
Temperature
Water - chemistry
title Impurities in Commercial Phytantriol Significantly Alter Its Lyotropic Liquid-Crystalline Phase Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T07%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impurities%20in%20Commercial%20Phytantriol%20Significantly%20Alter%20Its%20Lyotropic%20Liquid-Crystalline%20Phase%20Behavior&rft.jtitle=Langmuir&rft.au=Dong,%20Yao-Da&rft.date=2008-07-01&rft.volume=24&rft.issue=13&rft.spage=6998&rft.epage=7003&rft.pages=6998-7003&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la8005579&rft_dat=%3Cproquest_cross%3E69251620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69251620&rft_id=info:pmid/18522450&rfr_iscdi=true