Dual fluorescence/contactless conductivity detection for microfluidic chip

A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2008-07, Vol.621 (2), p.171-177
Hauptverfasser: Liu, Cui, Mo, Yun-yan, Chen, Zuan-guang, Li, Xiang, Li, Ou-lian, Zhou, Xie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 2
container_start_page 171
container_title Analytica chimica acta
container_volume 621
creator Liu, Cui
Mo, Yun-yan
Chen, Zuan-guang
Li, Xiang
Li, Ou-lian
Zhou, Xie
description A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K +, Na +, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na +, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02 μmol L −1, 0.05 μmol L −1, 0.16 μmol L −1, 0.15 μmol L −1, 0.12 μmol L −1 respectively, and the limits of detection (LOD) of CCD achieved 0.58 μmol L −1 and 0.39 μmol L −1 for K + and Na + respectively.
doi_str_mv 10.1016/j.aca.2008.05.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69243038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267008009380</els_id><sourcerecordid>33553202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-148d7430833e6d9f5ab302a08a942d5a88894d690f4627fdd2c5e2ffdd0233843</originalsourceid><addsrcrecordid>eNqFkUtPwzAQhC0EoqXwA7igXOCWdP1I4ogTKm9V4gJny_VDuEqTYieV-u9x1AhucPJYmh3NfovQJYYMAy7m60wqmREAnkGeAYMjNMW8pCmjhB2jKQDQlBQlTNBZCOv4JRjYKZpgnpeUcjxFr_e9rBNb9603QZlGmblqm06qrjYhJFHrXnVu57p9ok1nom6bxLY-2Tjl2zjotFOJ-nTbc3RiZR3MxfjO0Mfjw_viOV2-Pb0s7papYph0KWZcl4wCp9QUurK5XFEgErisGNG55JxXTBcVWFaQ0mpNVG6IjQJI7MzoDN0ccre-_epN6MTGxep1LRvT9kEUFYnxlP9rpDTPKYmpM4QPxrhRCN5YsfVuI_1eYBADabEWkbQYSAvIRSQdZ67G8H61Mfp3YkQbDdejQQYla-tlo1z48RFgRUnYsM7twWcis50zXgTlhkNo5yNuoVv3R41vFCWa7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33553202</pqid></control><display><type>article</type><title>Dual fluorescence/contactless conductivity detection for microfluidic chip</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Cui ; Mo, Yun-yan ; Chen, Zuan-guang ; Li, Xiang ; Li, Ou-lian ; Zhou, Xie</creator><creatorcontrib>Liu, Cui ; Mo, Yun-yan ; Chen, Zuan-guang ; Li, Xiang ; Li, Ou-lian ; Zhou, Xie</creatorcontrib><description>A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K +, Na +, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na +, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02 μmol L −1, 0.05 μmol L −1, 0.16 μmol L −1, 0.15 μmol L −1, 0.12 μmol L −1 respectively, and the limits of detection (LOD) of CCD achieved 0.58 μmol L −1 and 0.39 μmol L −1 for K + and Na + respectively.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2008.05.040</identifier><identifier>PMID: 18573381</identifier><identifier>CODEN: ACACAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Chemistry ; Contactless conductivity detection ; Dual detection ; Electric Conductivity ; Electrochemical methods ; Exact sciences and technology ; Fluorescein-5-isothiocyanate - analysis ; Fluorescence ; Fluorescence detection ; Light-emitting diode (LED) ; Microchip ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Photochemistry ; Spectrometric and optical methods</subject><ispartof>Analytica chimica acta, 2008-07, Vol.621 (2), p.171-177</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-148d7430833e6d9f5ab302a08a942d5a88894d690f4627fdd2c5e2ffdd0233843</citedby><cites>FETCH-LOGICAL-c412t-148d7430833e6d9f5ab302a08a942d5a88894d690f4627fdd2c5e2ffdd0233843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003267008009380$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20467244$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18573381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Cui</creatorcontrib><creatorcontrib>Mo, Yun-yan</creatorcontrib><creatorcontrib>Chen, Zuan-guang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Li, Ou-lian</creatorcontrib><creatorcontrib>Zhou, Xie</creatorcontrib><title>Dual fluorescence/contactless conductivity detection for microfluidic chip</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K +, Na +, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na +, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02 μmol L −1, 0.05 μmol L −1, 0.16 μmol L −1, 0.15 μmol L −1, 0.12 μmol L −1 respectively, and the limits of detection (LOD) of CCD achieved 0.58 μmol L −1 and 0.39 μmol L −1 for K + and Na + respectively.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Contactless conductivity detection</subject><subject>Dual detection</subject><subject>Electric Conductivity</subject><subject>Electrochemical methods</subject><subject>Exact sciences and technology</subject><subject>Fluorescein-5-isothiocyanate - analysis</subject><subject>Fluorescence</subject><subject>Fluorescence detection</subject><subject>Light-emitting diode (LED)</subject><subject>Microchip</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Photochemistry</subject><subject>Spectrometric and optical methods</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPwzAQhC0EoqXwA7igXOCWdP1I4ogTKm9V4gJny_VDuEqTYieV-u9x1AhucPJYmh3NfovQJYYMAy7m60wqmREAnkGeAYMjNMW8pCmjhB2jKQDQlBQlTNBZCOv4JRjYKZpgnpeUcjxFr_e9rBNb9603QZlGmblqm06qrjYhJFHrXnVu57p9ok1nom6bxLY-2Tjl2zjotFOJ-nTbc3RiZR3MxfjO0Mfjw_viOV2-Pb0s7papYph0KWZcl4wCp9QUurK5XFEgErisGNG55JxXTBcVWFaQ0mpNVG6IjQJI7MzoDN0ccre-_epN6MTGxep1LRvT9kEUFYnxlP9rpDTPKYmpM4QPxrhRCN5YsfVuI_1eYBADabEWkbQYSAvIRSQdZ67G8H61Mfp3YkQbDdejQQYla-tlo1z48RFgRUnYsM7twWcis50zXgTlhkNo5yNuoVv3R41vFCWa7g</recordid><startdate>20080728</startdate><enddate>20080728</enddate><creator>Liu, Cui</creator><creator>Mo, Yun-yan</creator><creator>Chen, Zuan-guang</creator><creator>Li, Xiang</creator><creator>Li, Ou-lian</creator><creator>Zhou, Xie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20080728</creationdate><title>Dual fluorescence/contactless conductivity detection for microfluidic chip</title><author>Liu, Cui ; Mo, Yun-yan ; Chen, Zuan-guang ; Li, Xiang ; Li, Ou-lian ; Zhou, Xie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-148d7430833e6d9f5ab302a08a942d5a88894d690f4627fdd2c5e2ffdd0233843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Contactless conductivity detection</topic><topic>Dual detection</topic><topic>Electric Conductivity</topic><topic>Electrochemical methods</topic><topic>Exact sciences and technology</topic><topic>Fluorescein-5-isothiocyanate - analysis</topic><topic>Fluorescence</topic><topic>Fluorescence detection</topic><topic>Light-emitting diode (LED)</topic><topic>Microchip</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Photochemistry</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cui</creatorcontrib><creatorcontrib>Mo, Yun-yan</creatorcontrib><creatorcontrib>Chen, Zuan-guang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Li, Ou-lian</creatorcontrib><creatorcontrib>Zhou, Xie</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cui</au><au>Mo, Yun-yan</au><au>Chen, Zuan-guang</au><au>Li, Xiang</au><au>Li, Ou-lian</au><au>Zhou, Xie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual fluorescence/contactless conductivity detection for microfluidic chip</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2008-07-28</date><risdate>2008</risdate><volume>621</volume><issue>2</issue><spage>171</spage><epage>177</epage><pages>171-177</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><coden>ACACAM</coden><abstract>A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K +, Na +, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na +, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02 μmol L −1, 0.05 μmol L −1, 0.16 μmol L −1, 0.15 μmol L −1, 0.12 μmol L −1 respectively, and the limits of detection (LOD) of CCD achieved 0.58 μmol L −1 and 0.39 μmol L −1 for K + and Na + respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>18573381</pmid><doi>10.1016/j.aca.2008.05.040</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2008-07, Vol.621 (2), p.171-177
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_69243038
source MEDLINE; Elsevier ScienceDirect Journals
subjects Analytical chemistry
Chemistry
Contactless conductivity detection
Dual detection
Electric Conductivity
Electrochemical methods
Exact sciences and technology
Fluorescein-5-isothiocyanate - analysis
Fluorescence
Fluorescence detection
Light-emitting diode (LED)
Microchip
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Photochemistry
Spectrometric and optical methods
title Dual fluorescence/contactless conductivity detection for microfluidic chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20fluorescence/contactless%20conductivity%20detection%20for%20microfluidic%20chip&rft.jtitle=Analytica%20chimica%20acta&rft.au=Liu,%20Cui&rft.date=2008-07-28&rft.volume=621&rft.issue=2&rft.spage=171&rft.epage=177&rft.pages=171-177&rft.issn=0003-2670&rft.eissn=1873-4324&rft.coden=ACACAM&rft_id=info:doi/10.1016/j.aca.2008.05.040&rft_dat=%3Cproquest_cross%3E33553202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33553202&rft_id=info:pmid/18573381&rft_els_id=S0003267008009380&rfr_iscdi=true