Dual fluorescence/contactless conductivity detection for microfluidic chip
A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2008-07, Vol.621 (2), p.171-177 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 2 |
container_start_page | 171 |
container_title | Analytica chimica acta |
container_volume | 621 |
creator | Liu, Cui Mo, Yun-yan Chen, Zuan-guang Li, Xiang Li, Ou-lian Zhou, Xie |
description | A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K
+, Na
+, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na
+, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02
μmol
L
−1, 0.05
μmol
L
−1, 0.16
μmol
L
−1, 0.15
μmol
L
−1, 0.12
μmol
L
−1 respectively, and the limits of detection (LOD) of CCD achieved 0.58
μmol
L
−1 and 0.39
μmol
L
−1 for K
+ and Na
+ respectively. |
doi_str_mv | 10.1016/j.aca.2008.05.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69243038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267008009380</els_id><sourcerecordid>33553202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-148d7430833e6d9f5ab302a08a942d5a88894d690f4627fdd2c5e2ffdd0233843</originalsourceid><addsrcrecordid>eNqFkUtPwzAQhC0EoqXwA7igXOCWdP1I4ogTKm9V4gJny_VDuEqTYieV-u9x1AhucPJYmh3NfovQJYYMAy7m60wqmREAnkGeAYMjNMW8pCmjhB2jKQDQlBQlTNBZCOv4JRjYKZpgnpeUcjxFr_e9rBNb9603QZlGmblqm06qrjYhJFHrXnVu57p9ok1nom6bxLY-2Tjl2zjotFOJ-nTbc3RiZR3MxfjO0Mfjw_viOV2-Pb0s7papYph0KWZcl4wCp9QUurK5XFEgErisGNG55JxXTBcVWFaQ0mpNVG6IjQJI7MzoDN0ccre-_epN6MTGxep1LRvT9kEUFYnxlP9rpDTPKYmpM4QPxrhRCN5YsfVuI_1eYBADabEWkbQYSAvIRSQdZ67G8H61Mfp3YkQbDdejQQYla-tlo1z48RFgRUnYsM7twWcis50zXgTlhkNo5yNuoVv3R41vFCWa7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33553202</pqid></control><display><type>article</type><title>Dual fluorescence/contactless conductivity detection for microfluidic chip</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Cui ; Mo, Yun-yan ; Chen, Zuan-guang ; Li, Xiang ; Li, Ou-lian ; Zhou, Xie</creator><creatorcontrib>Liu, Cui ; Mo, Yun-yan ; Chen, Zuan-guang ; Li, Xiang ; Li, Ou-lian ; Zhou, Xie</creatorcontrib><description>A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K
+, Na
+, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na
+, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02
μmol
L
−1, 0.05
μmol
L
−1, 0.16
μmol
L
−1, 0.15
μmol
L
−1, 0.12
μmol
L
−1 respectively, and the limits of detection (LOD) of CCD achieved 0.58
μmol
L
−1 and 0.39
μmol
L
−1 for K
+ and Na
+ respectively.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2008.05.040</identifier><identifier>PMID: 18573381</identifier><identifier>CODEN: ACACAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Chemistry ; Contactless conductivity detection ; Dual detection ; Electric Conductivity ; Electrochemical methods ; Exact sciences and technology ; Fluorescein-5-isothiocyanate - analysis ; Fluorescence ; Fluorescence detection ; Light-emitting diode (LED) ; Microchip ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Photochemistry ; Spectrometric and optical methods</subject><ispartof>Analytica chimica acta, 2008-07, Vol.621 (2), p.171-177</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-148d7430833e6d9f5ab302a08a942d5a88894d690f4627fdd2c5e2ffdd0233843</citedby><cites>FETCH-LOGICAL-c412t-148d7430833e6d9f5ab302a08a942d5a88894d690f4627fdd2c5e2ffdd0233843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003267008009380$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20467244$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18573381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Cui</creatorcontrib><creatorcontrib>Mo, Yun-yan</creatorcontrib><creatorcontrib>Chen, Zuan-guang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Li, Ou-lian</creatorcontrib><creatorcontrib>Zhou, Xie</creatorcontrib><title>Dual fluorescence/contactless conductivity detection for microfluidic chip</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K
+, Na
+, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na
+, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02
μmol
L
−1, 0.05
μmol
L
−1, 0.16
μmol
L
−1, 0.15
μmol
L
−1, 0.12
μmol
L
−1 respectively, and the limits of detection (LOD) of CCD achieved 0.58
μmol
L
−1 and 0.39
μmol
L
−1 for K
+ and Na
+ respectively.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Contactless conductivity detection</subject><subject>Dual detection</subject><subject>Electric Conductivity</subject><subject>Electrochemical methods</subject><subject>Exact sciences and technology</subject><subject>Fluorescein-5-isothiocyanate - analysis</subject><subject>Fluorescence</subject><subject>Fluorescence detection</subject><subject>Light-emitting diode (LED)</subject><subject>Microchip</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Photochemistry</subject><subject>Spectrometric and optical methods</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtPwzAQhC0EoqXwA7igXOCWdP1I4ogTKm9V4gJny_VDuEqTYieV-u9x1AhucPJYmh3NfovQJYYMAy7m60wqmREAnkGeAYMjNMW8pCmjhB2jKQDQlBQlTNBZCOv4JRjYKZpgnpeUcjxFr_e9rBNb9603QZlGmblqm06qrjYhJFHrXnVu57p9ok1nom6bxLY-2Tjl2zjotFOJ-nTbc3RiZR3MxfjO0Mfjw_viOV2-Pb0s7papYph0KWZcl4wCp9QUurK5XFEgErisGNG55JxXTBcVWFaQ0mpNVG6IjQJI7MzoDN0ccre-_epN6MTGxep1LRvT9kEUFYnxlP9rpDTPKYmpM4QPxrhRCN5YsfVuI_1eYBADabEWkbQYSAvIRSQdZ67G8H61Mfp3YkQbDdejQQYla-tlo1z48RFgRUnYsM7twWcis50zXgTlhkNo5yNuoVv3R41vFCWa7g</recordid><startdate>20080728</startdate><enddate>20080728</enddate><creator>Liu, Cui</creator><creator>Mo, Yun-yan</creator><creator>Chen, Zuan-guang</creator><creator>Li, Xiang</creator><creator>Li, Ou-lian</creator><creator>Zhou, Xie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20080728</creationdate><title>Dual fluorescence/contactless conductivity detection for microfluidic chip</title><author>Liu, Cui ; Mo, Yun-yan ; Chen, Zuan-guang ; Li, Xiang ; Li, Ou-lian ; Zhou, Xie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-148d7430833e6d9f5ab302a08a942d5a88894d690f4627fdd2c5e2ffdd0233843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Contactless conductivity detection</topic><topic>Dual detection</topic><topic>Electric Conductivity</topic><topic>Electrochemical methods</topic><topic>Exact sciences and technology</topic><topic>Fluorescein-5-isothiocyanate - analysis</topic><topic>Fluorescence</topic><topic>Fluorescence detection</topic><topic>Light-emitting diode (LED)</topic><topic>Microchip</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Photochemistry</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cui</creatorcontrib><creatorcontrib>Mo, Yun-yan</creatorcontrib><creatorcontrib>Chen, Zuan-guang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Li, Ou-lian</creatorcontrib><creatorcontrib>Zhou, Xie</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cui</au><au>Mo, Yun-yan</au><au>Chen, Zuan-guang</au><au>Li, Xiang</au><au>Li, Ou-lian</au><au>Zhou, Xie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual fluorescence/contactless conductivity detection for microfluidic chip</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2008-07-28</date><risdate>2008</risdate><volume>621</volume><issue>2</issue><spage>171</spage><epage>177</epage><pages>171-177</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><coden>ACACAM</coden><abstract>A new dual detection system for microchip is reported. Both fluorescence detector (FD) and contactless conductivity detector (CCD) were combined together and integrated on a microfluidic chip. They shared a common detection position and responded simultaneously. A blue light-emitting diode was used as excitation source and a small planar photodiode was used to collect the emitted fluorescence in fluorescence detection, which made the device more compact and portable. The coupling of the fluorescence and contactless conductivity modes at the same position of a single separation channel enhanced the detection characterization of sample and offered simultaneous detection information of both fluorescent and charged specimen. The detection conditions of the system were optimized. K
+, Na
+, fluorescein sodium, fluorescein isothiocyanate (FITC) and FITC-labeled amino acids were used to evaluate the performance of the dual detection system. The limits of detection (LOD) of FD for fluorescein Na
+, FITC, FITC-labeled arginine (Arg), glycine (Gly) and phenylalanine (Phe) were 0.02
μmol
L
−1, 0.05
μmol
L
−1, 0.16
μmol
L
−1, 0.15
μmol
L
−1, 0.12
μmol
L
−1 respectively, and the limits of detection (LOD) of CCD achieved 0.58
μmol
L
−1 and 0.39
μmol
L
−1 for K
+ and Na
+ respectively.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>18573381</pmid><doi>10.1016/j.aca.2008.05.040</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2670 |
ispartof | Analytica chimica acta, 2008-07, Vol.621 (2), p.171-177 |
issn | 0003-2670 1873-4324 |
language | eng |
recordid | cdi_proquest_miscellaneous_69243038 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Analytical chemistry Chemistry Contactless conductivity detection Dual detection Electric Conductivity Electrochemical methods Exact sciences and technology Fluorescein-5-isothiocyanate - analysis Fluorescence Fluorescence detection Light-emitting diode (LED) Microchip Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Photochemistry Spectrometric and optical methods |
title | Dual fluorescence/contactless conductivity detection for microfluidic chip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20fluorescence/contactless%20conductivity%20detection%20for%20microfluidic%20chip&rft.jtitle=Analytica%20chimica%20acta&rft.au=Liu,%20Cui&rft.date=2008-07-28&rft.volume=621&rft.issue=2&rft.spage=171&rft.epage=177&rft.pages=171-177&rft.issn=0003-2670&rft.eissn=1873-4324&rft.coden=ACACAM&rft_id=info:doi/10.1016/j.aca.2008.05.040&rft_dat=%3Cproquest_cross%3E33553202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33553202&rft_id=info:pmid/18573381&rft_els_id=S0003267008009380&rfr_iscdi=true |