Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study

The electrocatalytic activities and mechanisms of PtPb and PtBi ordered intermetallic phases towards formic acid, formaldehyde and methanol oxidation have been studied by DEMS and FTIRS, and the results compared to those for a pure polycrystalline platinum electrode. While PtPb exhibits an enhanced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2008-01, Vol.10 (25), p.3739-3751
Hauptverfasser: Wang, Hongsen, Alden, Laif, Disalvo, F J, Abruña, Héctor D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3751
container_issue 25
container_start_page 3739
container_title Physical chemistry chemical physics : PCCP
container_volume 10
creator Wang, Hongsen
Alden, Laif
Disalvo, F J
Abruña, Héctor D
description The electrocatalytic activities and mechanisms of PtPb and PtBi ordered intermetallic phases towards formic acid, formaldehyde and methanol oxidation have been studied by DEMS and FTIRS, and the results compared to those for a pure polycrystalline platinum electrode. While PtPb exhibits an enhanced electrocatalytic activity for the oxidation of all three organic molecules when compared to a Pt electrode, PtBi exhibits an enhanced catalytic activity towards formic acid and formaldehyde oxidation, but not methanol. FTIRS data indicate that adsorbed CO does not form on PtPb or PtBi intermetallic compounds during the oxidation of formic acid, formaldehyde and methanol, and therefore their oxidation on both PtPb and PtBi intermetallic compounds proceeds via a non-CO(ads) pathway. Quantitative DEMS measurements indicate that only CO(2) was detected as a final product during formic acid oxidation on Pt, PtPb and PtBi electrodes. At a smooth polycrystalline platinum electrode, the oxidation of formaldehyde and methanol produces mainly intermediates (formaldehyde and formic acid), while CO(2) is a minor product. In contrast, CO(2) is the major product for formaldehyde and methanol oxidation at a PtPb electrode. The high current efficiency of CO(2) formation for methanol and formaldehyde oxidation at a PtPb electrode can be ascribed to the complete dehydrogenation of formaldehyde and formic acid due to electronic effects. The low onset potential, high current density and high CO(2) yield make PtPb one of the most promising electrocatalysts for fuel cell applications using small organic molecules as fuels.
doi_str_mv 10.1039/b801473f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69234346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69234346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-74fe6d03af226897ab8841ef97df90f81e3ec398b31bdedb2d2795ebd5d86d543</originalsourceid><addsrcrecordid>eNpFkMtKAzEUQIMoVqvgF0hW4mY0mcwj405rq4WWFlvXQya5weg8apIBu_PTnT5UuHAvl8NZHIQuKLmhhGW3BSc0Spk-QCc0SliQER4d_t1p0kOnzr0TQmhM2THqUR4nLGTxCfoeliC9baTwolx7I3EF8k3UxlVY1Ap_mBq6r8ONxovZtNtfRglvmhpvxiqwoPDcz4stPvcPBpvag62gE5adTzbVqmlr5e7w43C62GKj5fhlgZ1v1foMHWlROjjf7z56HQ2Xg-dgMnsaD-4ngWRJ6oM00pAowoQOw4RnqSg4jyjoLFU6I5pTYCBZxgtGCwWqCFWYZjEUKlY8UXHE-uhq513Z5rMF5_PKOAllKWpoWpcnWcgi1gXro-sdKG3jnAWdr6yphF3nlOSb2vlv7Q693DvbogL1D-7zsh-YCHtT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69234346</pqid></control><display><type>article</type><title>Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Hongsen ; Alden, Laif ; Disalvo, F J ; Abruña, Héctor D</creator><creatorcontrib>Wang, Hongsen ; Alden, Laif ; Disalvo, F J ; Abruña, Héctor D</creatorcontrib><description>The electrocatalytic activities and mechanisms of PtPb and PtBi ordered intermetallic phases towards formic acid, formaldehyde and methanol oxidation have been studied by DEMS and FTIRS, and the results compared to those for a pure polycrystalline platinum electrode. While PtPb exhibits an enhanced electrocatalytic activity for the oxidation of all three organic molecules when compared to a Pt electrode, PtBi exhibits an enhanced catalytic activity towards formic acid and formaldehyde oxidation, but not methanol. FTIRS data indicate that adsorbed CO does not form on PtPb or PtBi intermetallic compounds during the oxidation of formic acid, formaldehyde and methanol, and therefore their oxidation on both PtPb and PtBi intermetallic compounds proceeds via a non-CO(ads) pathway. Quantitative DEMS measurements indicate that only CO(2) was detected as a final product during formic acid oxidation on Pt, PtPb and PtBi electrodes. At a smooth polycrystalline platinum electrode, the oxidation of formaldehyde and methanol produces mainly intermediates (formaldehyde and formic acid), while CO(2) is a minor product. In contrast, CO(2) is the major product for formaldehyde and methanol oxidation at a PtPb electrode. The high current efficiency of CO(2) formation for methanol and formaldehyde oxidation at a PtPb electrode can be ascribed to the complete dehydrogenation of formaldehyde and formic acid due to electronic effects. The low onset potential, high current density and high CO(2) yield make PtPb one of the most promising electrocatalysts for fuel cell applications using small organic molecules as fuels.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/b801473f</identifier><identifier>PMID: 18563235</identifier><language>eng</language><publisher>England</publisher><subject>Bismuth - chemistry ; Carbon Dioxide - chemistry ; Catalysis ; Electric Power Supplies ; Electrochemistry ; Electrodes ; Formaldehyde - chemistry ; Formates - chemistry ; Kinetics ; Lead - chemistry ; Mass Spectrometry - methods ; Methanol - chemistry ; Models, Chemical ; Oxidation-Reduction ; Platinum - chemistry ; Spectroscopy, Fourier Transform Infrared ; Sulfuric Acids - chemistry ; Surface Properties</subject><ispartof>Physical chemistry chemical physics : PCCP, 2008-01, Vol.10 (25), p.3739-3751</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-74fe6d03af226897ab8841ef97df90f81e3ec398b31bdedb2d2795ebd5d86d543</citedby><cites>FETCH-LOGICAL-c367t-74fe6d03af226897ab8841ef97df90f81e3ec398b31bdedb2d2795ebd5d86d543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18563235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Hongsen</creatorcontrib><creatorcontrib>Alden, Laif</creatorcontrib><creatorcontrib>Disalvo, F J</creatorcontrib><creatorcontrib>Abruña, Héctor D</creatorcontrib><title>Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The electrocatalytic activities and mechanisms of PtPb and PtBi ordered intermetallic phases towards formic acid, formaldehyde and methanol oxidation have been studied by DEMS and FTIRS, and the results compared to those for a pure polycrystalline platinum electrode. While PtPb exhibits an enhanced electrocatalytic activity for the oxidation of all three organic molecules when compared to a Pt electrode, PtBi exhibits an enhanced catalytic activity towards formic acid and formaldehyde oxidation, but not methanol. FTIRS data indicate that adsorbed CO does not form on PtPb or PtBi intermetallic compounds during the oxidation of formic acid, formaldehyde and methanol, and therefore their oxidation on both PtPb and PtBi intermetallic compounds proceeds via a non-CO(ads) pathway. Quantitative DEMS measurements indicate that only CO(2) was detected as a final product during formic acid oxidation on Pt, PtPb and PtBi electrodes. At a smooth polycrystalline platinum electrode, the oxidation of formaldehyde and methanol produces mainly intermediates (formaldehyde and formic acid), while CO(2) is a minor product. In contrast, CO(2) is the major product for formaldehyde and methanol oxidation at a PtPb electrode. The high current efficiency of CO(2) formation for methanol and formaldehyde oxidation at a PtPb electrode can be ascribed to the complete dehydrogenation of formaldehyde and formic acid due to electronic effects. The low onset potential, high current density and high CO(2) yield make PtPb one of the most promising electrocatalysts for fuel cell applications using small organic molecules as fuels.</description><subject>Bismuth - chemistry</subject><subject>Carbon Dioxide - chemistry</subject><subject>Catalysis</subject><subject>Electric Power Supplies</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Formaldehyde - chemistry</subject><subject>Formates - chemistry</subject><subject>Kinetics</subject><subject>Lead - chemistry</subject><subject>Mass Spectrometry - methods</subject><subject>Methanol - chemistry</subject><subject>Models, Chemical</subject><subject>Oxidation-Reduction</subject><subject>Platinum - chemistry</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Sulfuric Acids - chemistry</subject><subject>Surface Properties</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkMtKAzEUQIMoVqvgF0hW4mY0mcwj405rq4WWFlvXQya5weg8apIBu_PTnT5UuHAvl8NZHIQuKLmhhGW3BSc0Spk-QCc0SliQER4d_t1p0kOnzr0TQmhM2THqUR4nLGTxCfoeliC9baTwolx7I3EF8k3UxlVY1Ap_mBq6r8ONxovZtNtfRglvmhpvxiqwoPDcz4stPvcPBpvag62gE5adTzbVqmlr5e7w43C62GKj5fhlgZ1v1foMHWlROjjf7z56HQ2Xg-dgMnsaD-4ngWRJ6oM00pAowoQOw4RnqSg4jyjoLFU6I5pTYCBZxgtGCwWqCFWYZjEUKlY8UXHE-uhq513Z5rMF5_PKOAllKWpoWpcnWcgi1gXro-sdKG3jnAWdr6yphF3nlOSb2vlv7Q693DvbogL1D-7zsh-YCHtT</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Wang, Hongsen</creator><creator>Alden, Laif</creator><creator>Disalvo, F J</creator><creator>Abruña, Héctor D</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study</title><author>Wang, Hongsen ; Alden, Laif ; Disalvo, F J ; Abruña, Héctor D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-74fe6d03af226897ab8841ef97df90f81e3ec398b31bdedb2d2795ebd5d86d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bismuth - chemistry</topic><topic>Carbon Dioxide - chemistry</topic><topic>Catalysis</topic><topic>Electric Power Supplies</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Formaldehyde - chemistry</topic><topic>Formates - chemistry</topic><topic>Kinetics</topic><topic>Lead - chemistry</topic><topic>Mass Spectrometry - methods</topic><topic>Methanol - chemistry</topic><topic>Models, Chemical</topic><topic>Oxidation-Reduction</topic><topic>Platinum - chemistry</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Sulfuric Acids - chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongsen</creatorcontrib><creatorcontrib>Alden, Laif</creatorcontrib><creatorcontrib>Disalvo, F J</creatorcontrib><creatorcontrib>Abruña, Héctor D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongsen</au><au>Alden, Laif</au><au>Disalvo, F J</au><au>Abruña, Héctor D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>10</volume><issue>25</issue><spage>3739</spage><epage>3751</epage><pages>3739-3751</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The electrocatalytic activities and mechanisms of PtPb and PtBi ordered intermetallic phases towards formic acid, formaldehyde and methanol oxidation have been studied by DEMS and FTIRS, and the results compared to those for a pure polycrystalline platinum electrode. While PtPb exhibits an enhanced electrocatalytic activity for the oxidation of all three organic molecules when compared to a Pt electrode, PtBi exhibits an enhanced catalytic activity towards formic acid and formaldehyde oxidation, but not methanol. FTIRS data indicate that adsorbed CO does not form on PtPb or PtBi intermetallic compounds during the oxidation of formic acid, formaldehyde and methanol, and therefore their oxidation on both PtPb and PtBi intermetallic compounds proceeds via a non-CO(ads) pathway. Quantitative DEMS measurements indicate that only CO(2) was detected as a final product during formic acid oxidation on Pt, PtPb and PtBi electrodes. At a smooth polycrystalline platinum electrode, the oxidation of formaldehyde and methanol produces mainly intermediates (formaldehyde and formic acid), while CO(2) is a minor product. In contrast, CO(2) is the major product for formaldehyde and methanol oxidation at a PtPb electrode. The high current efficiency of CO(2) formation for methanol and formaldehyde oxidation at a PtPb electrode can be ascribed to the complete dehydrogenation of formaldehyde and formic acid due to electronic effects. The low onset potential, high current density and high CO(2) yield make PtPb one of the most promising electrocatalysts for fuel cell applications using small organic molecules as fuels.</abstract><cop>England</cop><pmid>18563235</pmid><doi>10.1039/b801473f</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2008-01, Vol.10 (25), p.3739-3751
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_69234346
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Bismuth - chemistry
Carbon Dioxide - chemistry
Catalysis
Electric Power Supplies
Electrochemistry
Electrodes
Formaldehyde - chemistry
Formates - chemistry
Kinetics
Lead - chemistry
Mass Spectrometry - methods
Methanol - chemistry
Models, Chemical
Oxidation-Reduction
Platinum - chemistry
Spectroscopy, Fourier Transform Infrared
Sulfuric Acids - chemistry
Surface Properties
title Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocatalytic%20mechanism%20and%20kinetics%20of%20SOMs%20oxidation%20on%20ordered%20PtPb%20and%20PtBi%20intermetallic%20compounds:%20DEMS%20and%20FTIRS%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wang,%20Hongsen&rft.date=2008-01-01&rft.volume=10&rft.issue=25&rft.spage=3739&rft.epage=3751&rft.pages=3739-3751&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/b801473f&rft_dat=%3Cproquest_cross%3E69234346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69234346&rft_id=info:pmid/18563235&rfr_iscdi=true