Resistance Exercise Biology: Manipulation of Resistance Exercise Programme Variables Determines the Responses of Cellular and Molecular Signalling Pathways
Recent advances in molecular biology have elucidated some of the mechanisms that regulate skeletal muscle growth. Logically, muscle physiologists have applied these innovations to the study of resistance exercise (RE), as RE represents the most potent natural stimulus for growth in adult skeletal mu...
Gespeichert in:
Veröffentlicht in: | Sports medicine (Auckland) 2008-01, Vol.38 (7), p.527-540 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 540 |
---|---|
container_issue | 7 |
container_start_page | 527 |
container_title | Sports medicine (Auckland) |
container_volume | 38 |
creator | Spiering, Barry A. Kraemer, William J. Anderson, Jeffrey M. Armstrong, Lawrence E. Nindl, Bradley C. Volek, Jeff S. Maresh, Carl M. |
description | Recent advances in molecular biology have elucidated some of the mechanisms that regulate skeletal muscle growth. Logically, muscle physiologists have applied these innovations to the study of resistance exercise (RE), as RE represents the most potent natural stimulus for growth in adult skeletal muscle. However, as this molecular-based line of research progresses to investigations in humans, scientists must appreciate the fundamental principles of RE to effectively design such experiments. Therefore, we present herein an updated paradigm of RE biology that integrates fundamental RE principles with the current knowledge of muscle cellular and molecular signalling. RE invokes a sequential cascade consisting of: (i) muscle activation; (ii) signalling events arising from mechanical deformation of muscle fibres, hormones, and immune/inflammatory responses; (iii) protein synthesis due to increased transcription and translation; and (iv) muscle fibre hypertrophy. In this paradigm, RE is considered an ‘upstream’ signal that determines specific downstream events. Therefore, manipulation of the acute RE programme variables (i.e. exercise choice, load, volume, rest period lengths, and exercise order) alters the unique ‘fingerprint’ of the RE stimulus and subsequently modifies the downstream cellular and molecular responses. |
doi_str_mv | 10.2165/00007256-200838070-00001 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69222851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A200844744</galeid><sourcerecordid>A200844744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-f68af6887b34b79512847de5581e42974dd0d2c690021eb19dda3cbd334c4f0b3</originalsourceid><addsrcrecordid>eNqFkV1LHDEUhoNY6mr7C4SyKPZuNDn5vlSxHyAUxF6HTHJmiczO2GQX6r9vxl0VpWBCCLx53sM5eQmZM3oKTMkzWpcGqRqg1HBDNW0mie2QGWPaVpnLXTKjjEHDlIA9sl_KXSWkEfCR7DEjpVZSzcjhDZZUVn4IOL_6izmkgvOLNPbj4uET-dD5vuDn7X1Afn-7ur380Vz_-v7z8vy6CULxVdMp4-sxuuWi1VYyMEJHlNIwFGC1iJFGCMpSCgxbZmP0PLSRcxFER1t-QL5u6t7n8c8ay8otUwnY937AcV2csgBgJHsXBGqskIZX8OgNeDeu81CHcABWCW2EqNDxBlr4Hl0aunGVfZgquvPpX4XQj9Tpf6i6Iy5TGAfsUtVfGczGEPJYSsbO3ee09PnBMeqm9NxTeu45vUdpmu_Ltu11u8T4YtzGVYGTLeBL8H2Xa26pPHNAJa8BTJzdcKU-DQvML_O_28Q_n8etRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229647844</pqid></control><display><type>article</type><title>Resistance Exercise Biology: Manipulation of Resistance Exercise Programme Variables Determines the Responses of Cellular and Molecular Signalling Pathways</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Spiering, Barry A. ; Kraemer, William J. ; Anderson, Jeffrey M. ; Armstrong, Lawrence E. ; Nindl, Bradley C. ; Volek, Jeff S. ; Maresh, Carl M.</creator><creatorcontrib>Spiering, Barry A. ; Kraemer, William J. ; Anderson, Jeffrey M. ; Armstrong, Lawrence E. ; Nindl, Bradley C. ; Volek, Jeff S. ; Maresh, Carl M.</creatorcontrib><description>Recent advances in molecular biology have elucidated some of the mechanisms that regulate skeletal muscle growth. Logically, muscle physiologists have applied these innovations to the study of resistance exercise (RE), as RE represents the most potent natural stimulus for growth in adult skeletal muscle. However, as this molecular-based line of research progresses to investigations in humans, scientists must appreciate the fundamental principles of RE to effectively design such experiments. Therefore, we present herein an updated paradigm of RE biology that integrates fundamental RE principles with the current knowledge of muscle cellular and molecular signalling. RE invokes a sequential cascade consisting of: (i) muscle activation; (ii) signalling events arising from mechanical deformation of muscle fibres, hormones, and immune/inflammatory responses; (iii) protein synthesis due to increased transcription and translation; and (iv) muscle fibre hypertrophy. In this paradigm, RE is considered an ‘upstream’ signal that determines specific downstream events. Therefore, manipulation of the acute RE programme variables (i.e. exercise choice, load, volume, rest period lengths, and exercise order) alters the unique ‘fingerprint’ of the RE stimulus and subsequently modifies the downstream cellular and molecular responses.</description><identifier>ISSN: 0112-1642</identifier><identifier>EISSN: 1179-2035</identifier><identifier>DOI: 10.2165/00007256-200838070-00001</identifier><identifier>PMID: 18557656</identifier><identifier>CODEN: SPMEE7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adenosine Monophosphate ; Biological and medical sciences ; Cellular signal transduction ; Current Opinion ; Deformation ; Exercise ; Force ; Fundamental and applied biological sciences. Psychology ; Growth ; Hormones ; Humans ; Insulin-Like Growth Factor I - genetics ; Intercellular Signaling Peptides and Proteins ; Kinases ; Medicine ; Medicine & Public Health ; Molecular biology ; Muscle contraction ; Muscle Contraction - physiology ; Muscle fatigue ; Muscle Fibers, Skeletal ; Muscle, Skeletal - growth & development ; Muscle, Skeletal - physiology ; Muscles ; Musculoskeletal system ; Physiological aspects ; Physiology ; Principles ; Protein synthesis ; Proteins ; Proto-Oncogene Proteins c-akt - physiology ; Signal Transduction - physiology ; Sirolimus ; Sports Medicine ; Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports ; Weight Lifting - physiology</subject><ispartof>Sports medicine (Auckland), 2008-01, Vol.38 (7), p.527-540</ispartof><rights>Adis Data Information BV 2008</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2008 Wolters Kluwer Health, Inc.</rights><rights>Copyright Wolters Kluwer Health Adis International 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c463t-f68af6887b34b79512847de5581e42974dd0d2c690021eb19dda3cbd334c4f0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.2165/00007256-200838070-00001$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.2165/00007256-200838070-00001$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20537956$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18557656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spiering, Barry A.</creatorcontrib><creatorcontrib>Kraemer, William J.</creatorcontrib><creatorcontrib>Anderson, Jeffrey M.</creatorcontrib><creatorcontrib>Armstrong, Lawrence E.</creatorcontrib><creatorcontrib>Nindl, Bradley C.</creatorcontrib><creatorcontrib>Volek, Jeff S.</creatorcontrib><creatorcontrib>Maresh, Carl M.</creatorcontrib><title>Resistance Exercise Biology: Manipulation of Resistance Exercise Programme Variables Determines the Responses of Cellular and Molecular Signalling Pathways</title><title>Sports medicine (Auckland)</title><addtitle>Sports Med</addtitle><addtitle>Sports Med</addtitle><description>Recent advances in molecular biology have elucidated some of the mechanisms that regulate skeletal muscle growth. Logically, muscle physiologists have applied these innovations to the study of resistance exercise (RE), as RE represents the most potent natural stimulus for growth in adult skeletal muscle. However, as this molecular-based line of research progresses to investigations in humans, scientists must appreciate the fundamental principles of RE to effectively design such experiments. Therefore, we present herein an updated paradigm of RE biology that integrates fundamental RE principles with the current knowledge of muscle cellular and molecular signalling. RE invokes a sequential cascade consisting of: (i) muscle activation; (ii) signalling events arising from mechanical deformation of muscle fibres, hormones, and immune/inflammatory responses; (iii) protein synthesis due to increased transcription and translation; and (iv) muscle fibre hypertrophy. In this paradigm, RE is considered an ‘upstream’ signal that determines specific downstream events. Therefore, manipulation of the acute RE programme variables (i.e. exercise choice, load, volume, rest period lengths, and exercise order) alters the unique ‘fingerprint’ of the RE stimulus and subsequently modifies the downstream cellular and molecular responses.</description><subject>Adenosine Monophosphate</subject><subject>Biological and medical sciences</subject><subject>Cellular signal transduction</subject><subject>Current Opinion</subject><subject>Deformation</subject><subject>Exercise</subject><subject>Force</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Growth</subject><subject>Hormones</subject><subject>Humans</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Intercellular Signaling Peptides and Proteins</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Molecular biology</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle fatigue</subject><subject>Muscle Fibers, Skeletal</subject><subject>Muscle, Skeletal - growth & development</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Principles</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt - physiology</subject><subject>Signal Transduction - physiology</subject><subject>Sirolimus</subject><subject>Sports Medicine</subject><subject>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</subject><subject>Weight Lifting - physiology</subject><issn>0112-1642</issn><issn>1179-2035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqFkV1LHDEUhoNY6mr7C4SyKPZuNDn5vlSxHyAUxF6HTHJmiczO2GQX6r9vxl0VpWBCCLx53sM5eQmZM3oKTMkzWpcGqRqg1HBDNW0mie2QGWPaVpnLXTKjjEHDlIA9sl_KXSWkEfCR7DEjpVZSzcjhDZZUVn4IOL_6izmkgvOLNPbj4uET-dD5vuDn7X1Afn-7ur380Vz_-v7z8vy6CULxVdMp4-sxuuWi1VYyMEJHlNIwFGC1iJFGCMpSCgxbZmP0PLSRcxFER1t-QL5u6t7n8c8ay8otUwnY937AcV2csgBgJHsXBGqskIZX8OgNeDeu81CHcABWCW2EqNDxBlr4Hl0aunGVfZgquvPpX4XQj9Tpf6i6Iy5TGAfsUtVfGczGEPJYSsbO3ee09PnBMeqm9NxTeu45vUdpmu_Ltu11u8T4YtzGVYGTLeBL8H2Xa26pPHNAJa8BTJzdcKU-DQvML_O_28Q_n8etRQ</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Spiering, Barry A.</creator><creator>Kraemer, William J.</creator><creator>Anderson, Jeffrey M.</creator><creator>Armstrong, Lawrence E.</creator><creator>Nindl, Bradley C.</creator><creator>Volek, Jeff S.</creator><creator>Maresh, Carl M.</creator><general>Springer International Publishing</general><general>Adis International</general><general>Wolters Kluwer Health, Inc</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QP</scope><scope>7RV</scope><scope>7TS</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Resistance Exercise Biology</title><author>Spiering, Barry A. ; Kraemer, William J. ; Anderson, Jeffrey M. ; Armstrong, Lawrence E. ; Nindl, Bradley C. ; Volek, Jeff S. ; Maresh, Carl M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-f68af6887b34b79512847de5581e42974dd0d2c690021eb19dda3cbd334c4f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine Monophosphate</topic><topic>Biological and medical sciences</topic><topic>Cellular signal transduction</topic><topic>Current Opinion</topic><topic>Deformation</topic><topic>Exercise</topic><topic>Force</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Growth</topic><topic>Hormones</topic><topic>Humans</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Intercellular Signaling Peptides and Proteins</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Molecular biology</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle fatigue</topic><topic>Muscle Fibers, Skeletal</topic><topic>Muscle, Skeletal - growth & development</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Principles</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt - physiology</topic><topic>Signal Transduction - physiology</topic><topic>Sirolimus</topic><topic>Sports Medicine</topic><topic>Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports</topic><topic>Weight Lifting - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spiering, Barry A.</creatorcontrib><creatorcontrib>Kraemer, William J.</creatorcontrib><creatorcontrib>Anderson, Jeffrey M.</creatorcontrib><creatorcontrib>Armstrong, Lawrence E.</creatorcontrib><creatorcontrib>Nindl, Bradley C.</creatorcontrib><creatorcontrib>Volek, Jeff S.</creatorcontrib><creatorcontrib>Maresh, Carl M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Physical Education Index</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Sports medicine (Auckland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spiering, Barry A.</au><au>Kraemer, William J.</au><au>Anderson, Jeffrey M.</au><au>Armstrong, Lawrence E.</au><au>Nindl, Bradley C.</au><au>Volek, Jeff S.</au><au>Maresh, Carl M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistance Exercise Biology: Manipulation of Resistance Exercise Programme Variables Determines the Responses of Cellular and Molecular Signalling Pathways</atitle><jtitle>Sports medicine (Auckland)</jtitle><stitle>Sports Med</stitle><addtitle>Sports Med</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>38</volume><issue>7</issue><spage>527</spage><epage>540</epage><pages>527-540</pages><issn>0112-1642</issn><eissn>1179-2035</eissn><coden>SPMEE7</coden><abstract>Recent advances in molecular biology have elucidated some of the mechanisms that regulate skeletal muscle growth. Logically, muscle physiologists have applied these innovations to the study of resistance exercise (RE), as RE represents the most potent natural stimulus for growth in adult skeletal muscle. However, as this molecular-based line of research progresses to investigations in humans, scientists must appreciate the fundamental principles of RE to effectively design such experiments. Therefore, we present herein an updated paradigm of RE biology that integrates fundamental RE principles with the current knowledge of muscle cellular and molecular signalling. RE invokes a sequential cascade consisting of: (i) muscle activation; (ii) signalling events arising from mechanical deformation of muscle fibres, hormones, and immune/inflammatory responses; (iii) protein synthesis due to increased transcription and translation; and (iv) muscle fibre hypertrophy. In this paradigm, RE is considered an ‘upstream’ signal that determines specific downstream events. Therefore, manipulation of the acute RE programme variables (i.e. exercise choice, load, volume, rest period lengths, and exercise order) alters the unique ‘fingerprint’ of the RE stimulus and subsequently modifies the downstream cellular and molecular responses.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>18557656</pmid><doi>10.2165/00007256-200838070-00001</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0112-1642 |
ispartof | Sports medicine (Auckland), 2008-01, Vol.38 (7), p.527-540 |
issn | 0112-1642 1179-2035 |
language | eng |
recordid | cdi_proquest_miscellaneous_69222851 |
source | MEDLINE; SpringerNature Journals |
subjects | Adenosine Monophosphate Biological and medical sciences Cellular signal transduction Current Opinion Deformation Exercise Force Fundamental and applied biological sciences. Psychology Growth Hormones Humans Insulin-Like Growth Factor I - genetics Intercellular Signaling Peptides and Proteins Kinases Medicine Medicine & Public Health Molecular biology Muscle contraction Muscle Contraction - physiology Muscle fatigue Muscle Fibers, Skeletal Muscle, Skeletal - growth & development Muscle, Skeletal - physiology Muscles Musculoskeletal system Physiological aspects Physiology Principles Protein synthesis Proteins Proto-Oncogene Proteins c-akt - physiology Signal Transduction - physiology Sirolimus Sports Medicine Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports Weight Lifting - physiology |
title | Resistance Exercise Biology: Manipulation of Resistance Exercise Programme Variables Determines the Responses of Cellular and Molecular Signalling Pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistance%20Exercise%20Biology:%20Manipulation%20of%20Resistance%20Exercise%20Programme%20Variables%20Determines%20the%20Responses%20of%20Cellular%20and%20Molecular%20Signalling%20Pathways&rft.jtitle=Sports%20medicine%20(Auckland)&rft.au=Spiering,%20Barry%20A.&rft.date=2008-01-01&rft.volume=38&rft.issue=7&rft.spage=527&rft.epage=540&rft.pages=527-540&rft.issn=0112-1642&rft.eissn=1179-2035&rft.coden=SPMEE7&rft_id=info:doi/10.2165/00007256-200838070-00001&rft_dat=%3Cgale_proqu%3EA200844744%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229647844&rft_id=info:pmid/18557656&rft_galeid=A200844744&rfr_iscdi=true |