Prediction of air-to-blood partition coefficients of volatile organic compounds using genetic algorithm and artificial neural network

An artificial neural network (ANN) was constructed and trained for the prediction of air-to-blood partition coefficients of volatile organic compounds. The inputs of this neural network are theoretically derived descriptors that were chosen by genetic algorithm (GA) and multiple linear regression (M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2008-07, Vol.619 (2), p.157-164
Hauptverfasser: Konoz, Elahe, Golmohammadi, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 2
container_start_page 157
container_title Analytica chimica acta
container_volume 619
creator Konoz, Elahe
Golmohammadi, Hassan
description An artificial neural network (ANN) was constructed and trained for the prediction of air-to-blood partition coefficients of volatile organic compounds. The inputs of this neural network are theoretically derived descriptors that were chosen by genetic algorithm (GA) and multiple linear regression (MLR) features selection techniques. These descriptors are: R maximal autocorrelation of lag 1 weighted by atomic Sanderson electronegativities (R1E+), electron density on the most negative atom in molecule (EDNA), maximum partial charge for C atom (MXPCC), surface weighted charge partial surface area (WNSA1), fractional charge partial surface area (FNSA2) and atomic charge weighted partial positive surface area (PPSA3). The standard errors of training, test and validation sets for the ANN model are 0.095, 0.148 and 0.120, respectively. Result obtained showed that nonlinear model can simulate the relationship between structural descriptors and the partition coefficients of the molecules in data set accurately.
doi_str_mv 10.1016/j.aca.2008.04.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69216493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267008008076</els_id><sourcerecordid>69216493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-7937b4774e8826cbff5cfa48d14ec65a6999b80ae8af3ed84f29addbbc30f3663</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EotvCA3BBucAtwf_iOOKEKqBIleAAZ8uxx4uXxF5sp4gH4L1xuiu4wWk0429-GvlD6BnBHcFEvDp02uiOYiw7zDss-gdoR-TAWs4of4h2GGPWUjHgC3SZ86G2lGD-GF0Q2feSYLlDvz4lsN4UH0MTXaN9aktspzlG2xx1Kv7-xURwzhsPoeQNu4uzLn6GJqa9Dt5UYDnGNdjcrNmHfbOHAKXO9byPyZevS6ODbba8LUbPTYA13ZfyI6ZvT9Ajp-cMT8_1Cn159_bz9U17-_H9h-s3t63hgyztMLJh4sPAQUoqzORcb5zm0hIORvRajOM4SaxBasfASu7oqK2dJsOwY0KwK_TylHtM8fsKuajFZwPzrAPENSsxUiL4yP4LMtYPgvItkZxAk2LOCZw6Jr_o9FMRrDZJ6qCqJLVJUpirKqnuPD-Hr9MC9u_G2UoFXpwBnY2eXdLB-PyHo5izceC0cq9PHNQ_u_OQVN4cmWo0gSnKRv-PM34DXdGylQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33576246</pqid></control><display><type>article</type><title>Prediction of air-to-blood partition coefficients of volatile organic compounds using genetic algorithm and artificial neural network</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Konoz, Elahe ; Golmohammadi, Hassan</creator><creatorcontrib>Konoz, Elahe ; Golmohammadi, Hassan</creatorcontrib><description>An artificial neural network (ANN) was constructed and trained for the prediction of air-to-blood partition coefficients of volatile organic compounds. The inputs of this neural network are theoretically derived descriptors that were chosen by genetic algorithm (GA) and multiple linear regression (MLR) features selection techniques. These descriptors are: R maximal autocorrelation of lag 1 weighted by atomic Sanderson electronegativities (R1E+), electron density on the most negative atom in molecule (EDNA), maximum partial charge for C atom (MXPCC), surface weighted charge partial surface area (WNSA1), fractional charge partial surface area (FNSA2) and atomic charge weighted partial positive surface area (PPSA3). The standard errors of training, test and validation sets for the ANN model are 0.095, 0.148 and 0.120, respectively. Result obtained showed that nonlinear model can simulate the relationship between structural descriptors and the partition coefficients of the molecules in data set accurately.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2008.04.065</identifier><identifier>PMID: 18558108</identifier><identifier>CODEN: ACACAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Air - analysis ; Air-to-blood partition coefficient ; Algorithms ; Analytical chemistry ; Artificial neural network ; Chemistry ; Exact sciences and technology ; General, instrumentation ; Genetic algorithm ; Models, Genetic ; Multiple linear regression ; Neural Networks (Computer) ; Organic Chemicals - blood ; Volatilization</subject><ispartof>Analytica chimica acta, 2008-07, Vol.619 (2), p.157-164</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-7937b4774e8826cbff5cfa48d14ec65a6999b80ae8af3ed84f29addbbc30f3663</citedby><cites>FETCH-LOGICAL-c478t-7937b4774e8826cbff5cfa48d14ec65a6999b80ae8af3ed84f29addbbc30f3663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aca.2008.04.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20439742$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18558108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Konoz, Elahe</creatorcontrib><creatorcontrib>Golmohammadi, Hassan</creatorcontrib><title>Prediction of air-to-blood partition coefficients of volatile organic compounds using genetic algorithm and artificial neural network</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>An artificial neural network (ANN) was constructed and trained for the prediction of air-to-blood partition coefficients of volatile organic compounds. The inputs of this neural network are theoretically derived descriptors that were chosen by genetic algorithm (GA) and multiple linear regression (MLR) features selection techniques. These descriptors are: R maximal autocorrelation of lag 1 weighted by atomic Sanderson electronegativities (R1E+), electron density on the most negative atom in molecule (EDNA), maximum partial charge for C atom (MXPCC), surface weighted charge partial surface area (WNSA1), fractional charge partial surface area (FNSA2) and atomic charge weighted partial positive surface area (PPSA3). The standard errors of training, test and validation sets for the ANN model are 0.095, 0.148 and 0.120, respectively. Result obtained showed that nonlinear model can simulate the relationship between structural descriptors and the partition coefficients of the molecules in data set accurately.</description><subject>Air - analysis</subject><subject>Air-to-blood partition coefficient</subject><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Artificial neural network</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Genetic algorithm</subject><subject>Models, Genetic</subject><subject>Multiple linear regression</subject><subject>Neural Networks (Computer)</subject><subject>Organic Chemicals - blood</subject><subject>Volatilization</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQhy0EotvCA3BBucAtwf_iOOKEKqBIleAAZ8uxx4uXxF5sp4gH4L1xuiu4wWk0429-GvlD6BnBHcFEvDp02uiOYiw7zDss-gdoR-TAWs4of4h2GGPWUjHgC3SZ86G2lGD-GF0Q2feSYLlDvz4lsN4UH0MTXaN9aktspzlG2xx1Kv7-xURwzhsPoeQNu4uzLn6GJqa9Dt5UYDnGNdjcrNmHfbOHAKXO9byPyZevS6ODbba8LUbPTYA13ZfyI6ZvT9Ajp-cMT8_1Cn159_bz9U17-_H9h-s3t63hgyztMLJh4sPAQUoqzORcb5zm0hIORvRajOM4SaxBasfASu7oqK2dJsOwY0KwK_TylHtM8fsKuajFZwPzrAPENSsxUiL4yP4LMtYPgvItkZxAk2LOCZw6Jr_o9FMRrDZJ6qCqJLVJUpirKqnuPD-Hr9MC9u_G2UoFXpwBnY2eXdLB-PyHo5izceC0cq9PHNQ_u_OQVN4cmWo0gSnKRv-PM34DXdGylQ</recordid><startdate>20080707</startdate><enddate>20080707</enddate><creator>Konoz, Elahe</creator><creator>Golmohammadi, Hassan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20080707</creationdate><title>Prediction of air-to-blood partition coefficients of volatile organic compounds using genetic algorithm and artificial neural network</title><author>Konoz, Elahe ; Golmohammadi, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-7937b4774e8826cbff5cfa48d14ec65a6999b80ae8af3ed84f29addbbc30f3663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Air - analysis</topic><topic>Air-to-blood partition coefficient</topic><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Artificial neural network</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Genetic algorithm</topic><topic>Models, Genetic</topic><topic>Multiple linear regression</topic><topic>Neural Networks (Computer)</topic><topic>Organic Chemicals - blood</topic><topic>Volatilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konoz, Elahe</creatorcontrib><creatorcontrib>Golmohammadi, Hassan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konoz, Elahe</au><au>Golmohammadi, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of air-to-blood partition coefficients of volatile organic compounds using genetic algorithm and artificial neural network</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2008-07-07</date><risdate>2008</risdate><volume>619</volume><issue>2</issue><spage>157</spage><epage>164</epage><pages>157-164</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><coden>ACACAM</coden><abstract>An artificial neural network (ANN) was constructed and trained for the prediction of air-to-blood partition coefficients of volatile organic compounds. The inputs of this neural network are theoretically derived descriptors that were chosen by genetic algorithm (GA) and multiple linear regression (MLR) features selection techniques. These descriptors are: R maximal autocorrelation of lag 1 weighted by atomic Sanderson electronegativities (R1E+), electron density on the most negative atom in molecule (EDNA), maximum partial charge for C atom (MXPCC), surface weighted charge partial surface area (WNSA1), fractional charge partial surface area (FNSA2) and atomic charge weighted partial positive surface area (PPSA3). The standard errors of training, test and validation sets for the ANN model are 0.095, 0.148 and 0.120, respectively. Result obtained showed that nonlinear model can simulate the relationship between structural descriptors and the partition coefficients of the molecules in data set accurately.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>18558108</pmid><doi>10.1016/j.aca.2008.04.065</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2008-07, Vol.619 (2), p.157-164
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_69216493
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Air - analysis
Air-to-blood partition coefficient
Algorithms
Analytical chemistry
Artificial neural network
Chemistry
Exact sciences and technology
General, instrumentation
Genetic algorithm
Models, Genetic
Multiple linear regression
Neural Networks (Computer)
Organic Chemicals - blood
Volatilization
title Prediction of air-to-blood partition coefficients of volatile organic compounds using genetic algorithm and artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20air-to-blood%20partition%20coefficients%20of%20volatile%20organic%20compounds%20using%20genetic%20algorithm%20and%20artificial%20neural%20network&rft.jtitle=Analytica%20chimica%20acta&rft.au=Konoz,%20Elahe&rft.date=2008-07-07&rft.volume=619&rft.issue=2&rft.spage=157&rft.epage=164&rft.pages=157-164&rft.issn=0003-2670&rft.eissn=1873-4324&rft.coden=ACACAM&rft_id=info:doi/10.1016/j.aca.2008.04.065&rft_dat=%3Cproquest_cross%3E69216493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33576246&rft_id=info:pmid/18558108&rft_els_id=S0003267008008076&rfr_iscdi=true