Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses

1,25-Dihydroxyvitamin D3 has been shown to play an important role in vitro in regulating osteoblast gene transcription and promoting osteoclast differentiation. To address the role of the vitamin D receptor (VDR) in skeletal homeostasis, formal histomorphometric analyses were performed in VDR null m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 1999-11, Vol.140 (11), p.4982-4987
Hauptverfasser: Amling, M, Priemel, M, Holzmann, T, Chapin, K, Rueger, J M, Baron, R, Demay, M B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4987
container_issue 11
container_start_page 4982
container_title Endocrinology (Philadelphia)
container_volume 140
creator Amling, M
Priemel, M
Holzmann, T
Chapin, K
Rueger, J M
Baron, R
Demay, M B
description 1,25-Dihydroxyvitamin D3 has been shown to play an important role in vitro in regulating osteoblast gene transcription and promoting osteoclast differentiation. To address the role of the vitamin D receptor (VDR) in skeletal homeostasis, formal histomorphometric analyses were performed in VDR null mice in the setting of impaired mineral ion homeostasis as well as in VDR null mice in whom normal mineral ion homeostasis had been preserved. In hypocalcemic VDR null mice, there was an increase in bone volume as a result of a dramatic increase in osteoid. There was also an increase in the number of osteoblasts without a significant change in the number of osteoclasts. Examination of the growth plate revealed marked disorganization, with an increase in vascularity and matrix. Biomechanical parameters demonstrated increased bone fragility in the hypocalcemic VDR null mice. In the VDR ablated mice in whom normal mineral ion homeostasis had been preserved, none of these measurements was significantly different from those in wild-type littermates raised under identical conditions. Notably, the morphology and width of the growth plate were indistinguishable from those in wild-type controls, demonstrating that a calcium/phosphorus/lactose-enriched diet started at 16 days of age in the VDR null mice permits the development of both normal morphology in the growth cartilage and adjacent metaphysis and normal biomechanical competence of cortical bone. Thus, the principle action of the VDR in skeletal growth, maturation, and remodeling is its role in intestinal calcium absorption. The skeletal consequences of VDR ablation are a result of impaired intestinal calcium absorption and/or the resultant secondary hyperparathyroidism and hypophosphatemia.
doi_str_mv 10.1210/endo.140.11.7110
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_69213059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130514772</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-3c08329f83d4d0a3cde85b65396a35861ddecc6c2d66efd35c947f4fd8c160603</originalsourceid><addsrcrecordid>eNqFkU-L1TAUxYMoznN070oCgrs-c5M0ad3JjI7CgCC6LnnJrc3YJjVJhfeR_JbmzZ-NG1eHw_mdA5dLyEtge-DA3mJwcQ-yOthrAPaI7KCXbaNBs8dkxxiIRnOuz8iznG-qlVKKp-QMWCs0cL4jf75ithvSONIyIc0_ccZiZrpOGGI5rrfJb1_M4gO9pAktriWmxhxmU9DRxVukNbotYyk-_Dg1QkxLXaklTFV9DHSKC8ZcTPb5HR3v8snnEpeY1lNYkrfUBEcPvjo7meBtZUww8zFjfk6ejGbO-OJez8n3jx--XXxqrr9cfb54f92s0EFphGWd4P3YCScdM8I67NqDakWvjGg7Bc6htcpypxSOTrS2l3qUo-ssKKaYOCdv7nbXFH9tmMuw-Gxxnk3AuOVB9RwEa_v_gqAll52GCr7-B7yJW6pn5UGcpkBqzSv16p7aDgu6YU1-Mek4PPxK_AXKcpn1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130514772</pqid></control><display><type>article</type><title>Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Amling, M ; Priemel, M ; Holzmann, T ; Chapin, K ; Rueger, J M ; Baron, R ; Demay, M B</creator><creatorcontrib>Amling, M ; Priemel, M ; Holzmann, T ; Chapin, K ; Rueger, J M ; Baron, R ; Demay, M B</creatorcontrib><description>1,25-Dihydroxyvitamin D3 has been shown to play an important role in vitro in regulating osteoblast gene transcription and promoting osteoclast differentiation. To address the role of the vitamin D receptor (VDR) in skeletal homeostasis, formal histomorphometric analyses were performed in VDR null mice in the setting of impaired mineral ion homeostasis as well as in VDR null mice in whom normal mineral ion homeostasis had been preserved. In hypocalcemic VDR null mice, there was an increase in bone volume as a result of a dramatic increase in osteoid. There was also an increase in the number of osteoblasts without a significant change in the number of osteoclasts. Examination of the growth plate revealed marked disorganization, with an increase in vascularity and matrix. Biomechanical parameters demonstrated increased bone fragility in the hypocalcemic VDR null mice. In the VDR ablated mice in whom normal mineral ion homeostasis had been preserved, none of these measurements was significantly different from those in wild-type littermates raised under identical conditions. Notably, the morphology and width of the growth plate were indistinguishable from those in wild-type controls, demonstrating that a calcium/phosphorus/lactose-enriched diet started at 16 days of age in the VDR null mice permits the development of both normal morphology in the growth cartilage and adjacent metaphysis and normal biomechanical competence of cortical bone. Thus, the principle action of the VDR in skeletal growth, maturation, and remodeling is its role in intestinal calcium absorption. The skeletal consequences of VDR ablation are a result of impaired intestinal calcium absorption and/or the resultant secondary hyperparathyroidism and hypophosphatemia.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/endo.140.11.7110</identifier><identifier>PMID: 10537122</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Ablation ; Absorption ; Animals ; Biomechanical Phenomena ; Biomechanics ; Bone and Bones - anatomy &amp; histology ; Bone and Bones - physiology ; Bone growth ; Bone matrix ; Calciferol ; Calcification, Physiologic ; Calcitriol ; Calcium ; Calcium absorption ; Cell Count ; Cortical bone ; Fragility ; Growth plate ; Homeostasis ; Hyperparathyroidism ; Hypocalcemia ; Hypophosphatemia ; Intestine ; Lactose ; Metaphysis ; Mice ; Mice, Knockout ; Minerals - metabolism ; Morphology ; Osteoblastogenesis ; Osteoblasts ; Osteoclastogenesis ; Osteoclasts ; Osteoid ; Phenotype ; Phenotypes ; Receptors ; Receptors, Calcitriol - deficiency ; Receptors, Calcitriol - physiology ; Rickets - etiology ; Space life sciences ; Vitamin D ; Vitamin D receptors ; Vitamin D3</subject><ispartof>Endocrinology (Philadelphia), 1999-11, Vol.140 (11), p.4982-4987</ispartof><rights>Copyright © 1999 by The Endocrine Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10537122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amling, M</creatorcontrib><creatorcontrib>Priemel, M</creatorcontrib><creatorcontrib>Holzmann, T</creatorcontrib><creatorcontrib>Chapin, K</creatorcontrib><creatorcontrib>Rueger, J M</creatorcontrib><creatorcontrib>Baron, R</creatorcontrib><creatorcontrib>Demay, M B</creatorcontrib><title>Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>1,25-Dihydroxyvitamin D3 has been shown to play an important role in vitro in regulating osteoblast gene transcription and promoting osteoclast differentiation. To address the role of the vitamin D receptor (VDR) in skeletal homeostasis, formal histomorphometric analyses were performed in VDR null mice in the setting of impaired mineral ion homeostasis as well as in VDR null mice in whom normal mineral ion homeostasis had been preserved. In hypocalcemic VDR null mice, there was an increase in bone volume as a result of a dramatic increase in osteoid. There was also an increase in the number of osteoblasts without a significant change in the number of osteoclasts. Examination of the growth plate revealed marked disorganization, with an increase in vascularity and matrix. Biomechanical parameters demonstrated increased bone fragility in the hypocalcemic VDR null mice. In the VDR ablated mice in whom normal mineral ion homeostasis had been preserved, none of these measurements was significantly different from those in wild-type littermates raised under identical conditions. Notably, the morphology and width of the growth plate were indistinguishable from those in wild-type controls, demonstrating that a calcium/phosphorus/lactose-enriched diet started at 16 days of age in the VDR null mice permits the development of both normal morphology in the growth cartilage and adjacent metaphysis and normal biomechanical competence of cortical bone. Thus, the principle action of the VDR in skeletal growth, maturation, and remodeling is its role in intestinal calcium absorption. The skeletal consequences of VDR ablation are a result of impaired intestinal calcium absorption and/or the resultant secondary hyperparathyroidism and hypophosphatemia.</description><subject>Ablation</subject><subject>Absorption</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Bone and Bones - anatomy &amp; histology</subject><subject>Bone and Bones - physiology</subject><subject>Bone growth</subject><subject>Bone matrix</subject><subject>Calciferol</subject><subject>Calcification, Physiologic</subject><subject>Calcitriol</subject><subject>Calcium</subject><subject>Calcium absorption</subject><subject>Cell Count</subject><subject>Cortical bone</subject><subject>Fragility</subject><subject>Growth plate</subject><subject>Homeostasis</subject><subject>Hyperparathyroidism</subject><subject>Hypocalcemia</subject><subject>Hypophosphatemia</subject><subject>Intestine</subject><subject>Lactose</subject><subject>Metaphysis</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Minerals - metabolism</subject><subject>Morphology</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteoid</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Receptors</subject><subject>Receptors, Calcitriol - deficiency</subject><subject>Receptors, Calcitriol - physiology</subject><subject>Rickets - etiology</subject><subject>Space life sciences</subject><subject>Vitamin D</subject><subject>Vitamin D receptors</subject><subject>Vitamin D3</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU-L1TAUxYMoznN070oCgrs-c5M0ad3JjI7CgCC6LnnJrc3YJjVJhfeR_JbmzZ-NG1eHw_mdA5dLyEtge-DA3mJwcQ-yOthrAPaI7KCXbaNBs8dkxxiIRnOuz8iznG-qlVKKp-QMWCs0cL4jf75ithvSONIyIc0_ccZiZrpOGGI5rrfJb1_M4gO9pAktriWmxhxmU9DRxVukNbotYyk-_Dg1QkxLXaklTFV9DHSKC8ZcTPb5HR3v8snnEpeY1lNYkrfUBEcPvjo7meBtZUww8zFjfk6ejGbO-OJez8n3jx--XXxqrr9cfb54f92s0EFphGWd4P3YCScdM8I67NqDakWvjGg7Bc6htcpypxSOTrS2l3qUo-ssKKaYOCdv7nbXFH9tmMuw-Gxxnk3AuOVB9RwEa_v_gqAll52GCr7-B7yJW6pn5UGcpkBqzSv16p7aDgu6YU1-Mek4PPxK_AXKcpn1</recordid><startdate>199911</startdate><enddate>199911</enddate><creator>Amling, M</creator><creator>Priemel, M</creator><creator>Holzmann, T</creator><creator>Chapin, K</creator><creator>Rueger, J M</creator><creator>Baron, R</creator><creator>Demay, M B</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>199911</creationdate><title>Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses</title><author>Amling, M ; Priemel, M ; Holzmann, T ; Chapin, K ; Rueger, J M ; Baron, R ; Demay, M B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-3c08329f83d4d0a3cde85b65396a35861ddecc6c2d66efd35c947f4fd8c160603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Ablation</topic><topic>Absorption</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Bone and Bones - anatomy &amp; histology</topic><topic>Bone and Bones - physiology</topic><topic>Bone growth</topic><topic>Bone matrix</topic><topic>Calciferol</topic><topic>Calcification, Physiologic</topic><topic>Calcitriol</topic><topic>Calcium</topic><topic>Calcium absorption</topic><topic>Cell Count</topic><topic>Cortical bone</topic><topic>Fragility</topic><topic>Growth plate</topic><topic>Homeostasis</topic><topic>Hyperparathyroidism</topic><topic>Hypocalcemia</topic><topic>Hypophosphatemia</topic><topic>Intestine</topic><topic>Lactose</topic><topic>Metaphysis</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Minerals - metabolism</topic><topic>Morphology</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteoid</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Receptors</topic><topic>Receptors, Calcitriol - deficiency</topic><topic>Receptors, Calcitriol - physiology</topic><topic>Rickets - etiology</topic><topic>Space life sciences</topic><topic>Vitamin D</topic><topic>Vitamin D receptors</topic><topic>Vitamin D3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amling, M</creatorcontrib><creatorcontrib>Priemel, M</creatorcontrib><creatorcontrib>Holzmann, T</creatorcontrib><creatorcontrib>Chapin, K</creatorcontrib><creatorcontrib>Rueger, J M</creatorcontrib><creatorcontrib>Baron, R</creatorcontrib><creatorcontrib>Demay, M B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amling, M</au><au>Priemel, M</au><au>Holzmann, T</au><au>Chapin, K</au><au>Rueger, J M</au><au>Baron, R</au><au>Demay, M B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>1999-11</date><risdate>1999</risdate><volume>140</volume><issue>11</issue><spage>4982</spage><epage>4987</epage><pages>4982-4987</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><abstract>1,25-Dihydroxyvitamin D3 has been shown to play an important role in vitro in regulating osteoblast gene transcription and promoting osteoclast differentiation. To address the role of the vitamin D receptor (VDR) in skeletal homeostasis, formal histomorphometric analyses were performed in VDR null mice in the setting of impaired mineral ion homeostasis as well as in VDR null mice in whom normal mineral ion homeostasis had been preserved. In hypocalcemic VDR null mice, there was an increase in bone volume as a result of a dramatic increase in osteoid. There was also an increase in the number of osteoblasts without a significant change in the number of osteoclasts. Examination of the growth plate revealed marked disorganization, with an increase in vascularity and matrix. Biomechanical parameters demonstrated increased bone fragility in the hypocalcemic VDR null mice. In the VDR ablated mice in whom normal mineral ion homeostasis had been preserved, none of these measurements was significantly different from those in wild-type littermates raised under identical conditions. Notably, the morphology and width of the growth plate were indistinguishable from those in wild-type controls, demonstrating that a calcium/phosphorus/lactose-enriched diet started at 16 days of age in the VDR null mice permits the development of both normal morphology in the growth cartilage and adjacent metaphysis and normal biomechanical competence of cortical bone. Thus, the principle action of the VDR in skeletal growth, maturation, and remodeling is its role in intestinal calcium absorption. The skeletal consequences of VDR ablation are a result of impaired intestinal calcium absorption and/or the resultant secondary hyperparathyroidism and hypophosphatemia.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>10537122</pmid><doi>10.1210/endo.140.11.7110</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7227
ispartof Endocrinology (Philadelphia), 1999-11, Vol.140 (11), p.4982-4987
issn 0013-7227
1945-7170
language eng
recordid cdi_proquest_miscellaneous_69213059
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Ablation
Absorption
Animals
Biomechanical Phenomena
Biomechanics
Bone and Bones - anatomy & histology
Bone and Bones - physiology
Bone growth
Bone matrix
Calciferol
Calcification, Physiologic
Calcitriol
Calcium
Calcium absorption
Cell Count
Cortical bone
Fragility
Growth plate
Homeostasis
Hyperparathyroidism
Hypocalcemia
Hypophosphatemia
Intestine
Lactose
Metaphysis
Mice
Mice, Knockout
Minerals - metabolism
Morphology
Osteoblastogenesis
Osteoblasts
Osteoclastogenesis
Osteoclasts
Osteoid
Phenotype
Phenotypes
Receptors
Receptors, Calcitriol - deficiency
Receptors, Calcitriol - physiology
Rickets - etiology
Space life sciences
Vitamin D
Vitamin D receptors
Vitamin D3
title Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rescue%20of%20the%20skeletal%20phenotype%20of%20vitamin%20D%20receptor-ablated%20mice%20in%20the%20setting%20of%20normal%20mineral%20ion%20homeostasis:%20formal%20histomorphometric%20and%20biomechanical%20analyses&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Amling,%20M&rft.date=1999-11&rft.volume=140&rft.issue=11&rft.spage=4982&rft.epage=4987&rft.pages=4982-4987&rft.issn=0013-7227&rft.eissn=1945-7170&rft_id=info:doi/10.1210/endo.140.11.7110&rft_dat=%3Cproquest_pubme%3E3130514772%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130514772&rft_id=info:pmid/10537122&rfr_iscdi=true