Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses
1,25-Dihydroxyvitamin D3 has been shown to play an important role in vitro in regulating osteoblast gene transcription and promoting osteoclast differentiation. To address the role of the vitamin D receptor (VDR) in skeletal homeostasis, formal histomorphometric analyses were performed in VDR null m...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 1999-11, Vol.140 (11), p.4982-4987 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4987 |
---|---|
container_issue | 11 |
container_start_page | 4982 |
container_title | Endocrinology (Philadelphia) |
container_volume | 140 |
creator | Amling, M Priemel, M Holzmann, T Chapin, K Rueger, J M Baron, R Demay, M B |
description | 1,25-Dihydroxyvitamin D3 has been shown to play an important role in vitro in regulating osteoblast gene transcription and promoting osteoclast differentiation. To address the role of the vitamin D receptor (VDR) in skeletal homeostasis, formal histomorphometric analyses were performed in VDR null mice in the setting of impaired mineral ion homeostasis as well as in VDR null mice in whom normal mineral ion homeostasis had been preserved. In hypocalcemic VDR null mice, there was an increase in bone volume as a result of a dramatic increase in osteoid. There was also an increase in the number of osteoblasts without a significant change in the number of osteoclasts. Examination of the growth plate revealed marked disorganization, with an increase in vascularity and matrix. Biomechanical parameters demonstrated increased bone fragility in the hypocalcemic VDR null mice. In the VDR ablated mice in whom normal mineral ion homeostasis had been preserved, none of these measurements was significantly different from those in wild-type littermates raised under identical conditions. Notably, the morphology and width of the growth plate were indistinguishable from those in wild-type controls, demonstrating that a calcium/phosphorus/lactose-enriched diet started at 16 days of age in the VDR null mice permits the development of both normal morphology in the growth cartilage and adjacent metaphysis and normal biomechanical competence of cortical bone. Thus, the principle action of the VDR in skeletal growth, maturation, and remodeling is its role in intestinal calcium absorption. The skeletal consequences of VDR ablation are a result of impaired intestinal calcium absorption and/or the resultant secondary hyperparathyroidism and hypophosphatemia. |
doi_str_mv | 10.1210/endo.140.11.7110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_69213059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130514772</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-3c08329f83d4d0a3cde85b65396a35861ddecc6c2d66efd35c947f4fd8c160603</originalsourceid><addsrcrecordid>eNqFkU-L1TAUxYMoznN070oCgrs-c5M0ad3JjI7CgCC6LnnJrc3YJjVJhfeR_JbmzZ-NG1eHw_mdA5dLyEtge-DA3mJwcQ-yOthrAPaI7KCXbaNBs8dkxxiIRnOuz8iznG-qlVKKp-QMWCs0cL4jf75ithvSONIyIc0_ccZiZrpOGGI5rrfJb1_M4gO9pAktriWmxhxmU9DRxVukNbotYyk-_Dg1QkxLXaklTFV9DHSKC8ZcTPb5HR3v8snnEpeY1lNYkrfUBEcPvjo7meBtZUww8zFjfk6ejGbO-OJez8n3jx--XXxqrr9cfb54f92s0EFphGWd4P3YCScdM8I67NqDakWvjGg7Bc6htcpypxSOTrS2l3qUo-ssKKaYOCdv7nbXFH9tmMuw-Gxxnk3AuOVB9RwEa_v_gqAll52GCr7-B7yJW6pn5UGcpkBqzSv16p7aDgu6YU1-Mek4PPxK_AXKcpn1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130514772</pqid></control><display><type>article</type><title>Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Amling, M ; Priemel, M ; Holzmann, T ; Chapin, K ; Rueger, J M ; Baron, R ; Demay, M B</creator><creatorcontrib>Amling, M ; Priemel, M ; Holzmann, T ; Chapin, K ; Rueger, J M ; Baron, R ; Demay, M B</creatorcontrib><description>1,25-Dihydroxyvitamin D3 has been shown to play an important role in vitro in regulating osteoblast gene transcription and promoting osteoclast differentiation. To address the role of the vitamin D receptor (VDR) in skeletal homeostasis, formal histomorphometric analyses were performed in VDR null mice in the setting of impaired mineral ion homeostasis as well as in VDR null mice in whom normal mineral ion homeostasis had been preserved. In hypocalcemic VDR null mice, there was an increase in bone volume as a result of a dramatic increase in osteoid. There was also an increase in the number of osteoblasts without a significant change in the number of osteoclasts. Examination of the growth plate revealed marked disorganization, with an increase in vascularity and matrix. Biomechanical parameters demonstrated increased bone fragility in the hypocalcemic VDR null mice. In the VDR ablated mice in whom normal mineral ion homeostasis had been preserved, none of these measurements was significantly different from those in wild-type littermates raised under identical conditions. Notably, the morphology and width of the growth plate were indistinguishable from those in wild-type controls, demonstrating that a calcium/phosphorus/lactose-enriched diet started at 16 days of age in the VDR null mice permits the development of both normal morphology in the growth cartilage and adjacent metaphysis and normal biomechanical competence of cortical bone. Thus, the principle action of the VDR in skeletal growth, maturation, and remodeling is its role in intestinal calcium absorption. The skeletal consequences of VDR ablation are a result of impaired intestinal calcium absorption and/or the resultant secondary hyperparathyroidism and hypophosphatemia.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/endo.140.11.7110</identifier><identifier>PMID: 10537122</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Ablation ; Absorption ; Animals ; Biomechanical Phenomena ; Biomechanics ; Bone and Bones - anatomy & histology ; Bone and Bones - physiology ; Bone growth ; Bone matrix ; Calciferol ; Calcification, Physiologic ; Calcitriol ; Calcium ; Calcium absorption ; Cell Count ; Cortical bone ; Fragility ; Growth plate ; Homeostasis ; Hyperparathyroidism ; Hypocalcemia ; Hypophosphatemia ; Intestine ; Lactose ; Metaphysis ; Mice ; Mice, Knockout ; Minerals - metabolism ; Morphology ; Osteoblastogenesis ; Osteoblasts ; Osteoclastogenesis ; Osteoclasts ; Osteoid ; Phenotype ; Phenotypes ; Receptors ; Receptors, Calcitriol - deficiency ; Receptors, Calcitriol - physiology ; Rickets - etiology ; Space life sciences ; Vitamin D ; Vitamin D receptors ; Vitamin D3</subject><ispartof>Endocrinology (Philadelphia), 1999-11, Vol.140 (11), p.4982-4987</ispartof><rights>Copyright © 1999 by The Endocrine Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10537122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amling, M</creatorcontrib><creatorcontrib>Priemel, M</creatorcontrib><creatorcontrib>Holzmann, T</creatorcontrib><creatorcontrib>Chapin, K</creatorcontrib><creatorcontrib>Rueger, J M</creatorcontrib><creatorcontrib>Baron, R</creatorcontrib><creatorcontrib>Demay, M B</creatorcontrib><title>Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>1,25-Dihydroxyvitamin D3 has been shown to play an important role in vitro in regulating osteoblast gene transcription and promoting osteoclast differentiation. To address the role of the vitamin D receptor (VDR) in skeletal homeostasis, formal histomorphometric analyses were performed in VDR null mice in the setting of impaired mineral ion homeostasis as well as in VDR null mice in whom normal mineral ion homeostasis had been preserved. In hypocalcemic VDR null mice, there was an increase in bone volume as a result of a dramatic increase in osteoid. There was also an increase in the number of osteoblasts without a significant change in the number of osteoclasts. Examination of the growth plate revealed marked disorganization, with an increase in vascularity and matrix. Biomechanical parameters demonstrated increased bone fragility in the hypocalcemic VDR null mice. In the VDR ablated mice in whom normal mineral ion homeostasis had been preserved, none of these measurements was significantly different from those in wild-type littermates raised under identical conditions. Notably, the morphology and width of the growth plate were indistinguishable from those in wild-type controls, demonstrating that a calcium/phosphorus/lactose-enriched diet started at 16 days of age in the VDR null mice permits the development of both normal morphology in the growth cartilage and adjacent metaphysis and normal biomechanical competence of cortical bone. Thus, the principle action of the VDR in skeletal growth, maturation, and remodeling is its role in intestinal calcium absorption. The skeletal consequences of VDR ablation are a result of impaired intestinal calcium absorption and/or the resultant secondary hyperparathyroidism and hypophosphatemia.</description><subject>Ablation</subject><subject>Absorption</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Bone and Bones - anatomy & histology</subject><subject>Bone and Bones - physiology</subject><subject>Bone growth</subject><subject>Bone matrix</subject><subject>Calciferol</subject><subject>Calcification, Physiologic</subject><subject>Calcitriol</subject><subject>Calcium</subject><subject>Calcium absorption</subject><subject>Cell Count</subject><subject>Cortical bone</subject><subject>Fragility</subject><subject>Growth plate</subject><subject>Homeostasis</subject><subject>Hyperparathyroidism</subject><subject>Hypocalcemia</subject><subject>Hypophosphatemia</subject><subject>Intestine</subject><subject>Lactose</subject><subject>Metaphysis</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Minerals - metabolism</subject><subject>Morphology</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteoid</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Receptors</subject><subject>Receptors, Calcitriol - deficiency</subject><subject>Receptors, Calcitriol - physiology</subject><subject>Rickets - etiology</subject><subject>Space life sciences</subject><subject>Vitamin D</subject><subject>Vitamin D receptors</subject><subject>Vitamin D3</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU-L1TAUxYMoznN070oCgrs-c5M0ad3JjI7CgCC6LnnJrc3YJjVJhfeR_JbmzZ-NG1eHw_mdA5dLyEtge-DA3mJwcQ-yOthrAPaI7KCXbaNBs8dkxxiIRnOuz8iznG-qlVKKp-QMWCs0cL4jf75ithvSONIyIc0_ccZiZrpOGGI5rrfJb1_M4gO9pAktriWmxhxmU9DRxVukNbotYyk-_Dg1QkxLXaklTFV9DHSKC8ZcTPb5HR3v8snnEpeY1lNYkrfUBEcPvjo7meBtZUww8zFjfk6ejGbO-OJez8n3jx--XXxqrr9cfb54f92s0EFphGWd4P3YCScdM8I67NqDakWvjGg7Bc6htcpypxSOTrS2l3qUo-ssKKaYOCdv7nbXFH9tmMuw-Gxxnk3AuOVB9RwEa_v_gqAll52GCr7-B7yJW6pn5UGcpkBqzSv16p7aDgu6YU1-Mek4PPxK_AXKcpn1</recordid><startdate>199911</startdate><enddate>199911</enddate><creator>Amling, M</creator><creator>Priemel, M</creator><creator>Holzmann, T</creator><creator>Chapin, K</creator><creator>Rueger, J M</creator><creator>Baron, R</creator><creator>Demay, M B</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>199911</creationdate><title>Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses</title><author>Amling, M ; Priemel, M ; Holzmann, T ; Chapin, K ; Rueger, J M ; Baron, R ; Demay, M B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-3c08329f83d4d0a3cde85b65396a35861ddecc6c2d66efd35c947f4fd8c160603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Ablation</topic><topic>Absorption</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Bone and Bones - anatomy & histology</topic><topic>Bone and Bones - physiology</topic><topic>Bone growth</topic><topic>Bone matrix</topic><topic>Calciferol</topic><topic>Calcification, Physiologic</topic><topic>Calcitriol</topic><topic>Calcium</topic><topic>Calcium absorption</topic><topic>Cell Count</topic><topic>Cortical bone</topic><topic>Fragility</topic><topic>Growth plate</topic><topic>Homeostasis</topic><topic>Hyperparathyroidism</topic><topic>Hypocalcemia</topic><topic>Hypophosphatemia</topic><topic>Intestine</topic><topic>Lactose</topic><topic>Metaphysis</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Minerals - metabolism</topic><topic>Morphology</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteoid</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Receptors</topic><topic>Receptors, Calcitriol - deficiency</topic><topic>Receptors, Calcitriol - physiology</topic><topic>Rickets - etiology</topic><topic>Space life sciences</topic><topic>Vitamin D</topic><topic>Vitamin D receptors</topic><topic>Vitamin D3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amling, M</creatorcontrib><creatorcontrib>Priemel, M</creatorcontrib><creatorcontrib>Holzmann, T</creatorcontrib><creatorcontrib>Chapin, K</creatorcontrib><creatorcontrib>Rueger, J M</creatorcontrib><creatorcontrib>Baron, R</creatorcontrib><creatorcontrib>Demay, M B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amling, M</au><au>Priemel, M</au><au>Holzmann, T</au><au>Chapin, K</au><au>Rueger, J M</au><au>Baron, R</au><au>Demay, M B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>1999-11</date><risdate>1999</risdate><volume>140</volume><issue>11</issue><spage>4982</spage><epage>4987</epage><pages>4982-4987</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><abstract>1,25-Dihydroxyvitamin D3 has been shown to play an important role in vitro in regulating osteoblast gene transcription and promoting osteoclast differentiation. To address the role of the vitamin D receptor (VDR) in skeletal homeostasis, formal histomorphometric analyses were performed in VDR null mice in the setting of impaired mineral ion homeostasis as well as in VDR null mice in whom normal mineral ion homeostasis had been preserved. In hypocalcemic VDR null mice, there was an increase in bone volume as a result of a dramatic increase in osteoid. There was also an increase in the number of osteoblasts without a significant change in the number of osteoclasts. Examination of the growth plate revealed marked disorganization, with an increase in vascularity and matrix. Biomechanical parameters demonstrated increased bone fragility in the hypocalcemic VDR null mice. In the VDR ablated mice in whom normal mineral ion homeostasis had been preserved, none of these measurements was significantly different from those in wild-type littermates raised under identical conditions. Notably, the morphology and width of the growth plate were indistinguishable from those in wild-type controls, demonstrating that a calcium/phosphorus/lactose-enriched diet started at 16 days of age in the VDR null mice permits the development of both normal morphology in the growth cartilage and adjacent metaphysis and normal biomechanical competence of cortical bone. Thus, the principle action of the VDR in skeletal growth, maturation, and remodeling is its role in intestinal calcium absorption. The skeletal consequences of VDR ablation are a result of impaired intestinal calcium absorption and/or the resultant secondary hyperparathyroidism and hypophosphatemia.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>10537122</pmid><doi>10.1210/endo.140.11.7110</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7227 |
ispartof | Endocrinology (Philadelphia), 1999-11, Vol.140 (11), p.4982-4987 |
issn | 0013-7227 1945-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_69213059 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Ablation Absorption Animals Biomechanical Phenomena Biomechanics Bone and Bones - anatomy & histology Bone and Bones - physiology Bone growth Bone matrix Calciferol Calcification, Physiologic Calcitriol Calcium Calcium absorption Cell Count Cortical bone Fragility Growth plate Homeostasis Hyperparathyroidism Hypocalcemia Hypophosphatemia Intestine Lactose Metaphysis Mice Mice, Knockout Minerals - metabolism Morphology Osteoblastogenesis Osteoblasts Osteoclastogenesis Osteoclasts Osteoid Phenotype Phenotypes Receptors Receptors, Calcitriol - deficiency Receptors, Calcitriol - physiology Rickets - etiology Space life sciences Vitamin D Vitamin D receptors Vitamin D3 |
title | Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rescue%20of%20the%20skeletal%20phenotype%20of%20vitamin%20D%20receptor-ablated%20mice%20in%20the%20setting%20of%20normal%20mineral%20ion%20homeostasis:%20formal%20histomorphometric%20and%20biomechanical%20analyses&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Amling,%20M&rft.date=1999-11&rft.volume=140&rft.issue=11&rft.spage=4982&rft.epage=4987&rft.pages=4982-4987&rft.issn=0013-7227&rft.eissn=1945-7170&rft_id=info:doi/10.1210/endo.140.11.7110&rft_dat=%3Cproquest_pubme%3E3130514772%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130514772&rft_id=info:pmid/10537122&rfr_iscdi=true |