Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis
In many bacteria, the concentration of L-arginine is controlled by a transcriptional regulator, the arginine repressor. In Bacillus subtilis this transcription factor is called AhrC and has roles in both the repression and activation of the genes involved in arginine metabolism. It interacts with 18...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2008-05, Vol.379 (2), p.284-298 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 2 |
container_start_page | 284 |
container_title | Journal of molecular biology |
container_volume | 379 |
creator | Garnett, James A. Marincs, Ferenc Baumberg, Simon Stockley, Peter G. Phillips, Simon E.V. |
description | In many bacteria, the concentration of L-arginine is controlled by a transcriptional regulator, the arginine repressor. In
Bacillus subtilis this transcription factor is called AhrC and has roles in both the repression and activation of the genes involved in arginine metabolism. It interacts with 18 bp ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a hexamer and each subunit has two domains. The C-terminal domains form the core, mediating inter-subunit interactions and L-arginine binding, while the N-terminal domains contain a winged helix-turn-helix DNA-binding motif and are arranged around the periphery. Upon binding of the co-repressor L-arginine there is a ∼
15° relative rotation between core C-terminal trimers. Here, we report the X-ray crystal structure of a dimer of the N-terminal domains of AhrC (NAhrC) in complex with an 18 bp DNA ARG box operator, refined to 2.85 Å resolution. Comparison of the N-terminal domains within this complex with those of the free domain reveals that the flexible β-wings of the DNA-binding motif in the free domain form a stable dimer interface in the protein–DNA complex, favouring correct orientation of the recognition helices. These are then positioned to insert into adjacent turns of the major groove of the ARG box, whilst the wings contact the minor groove. There are extensive contacts between the protein and the DNA phosphodiester backbone, as well as a number of direct hydrogen bonds between conserved amino acid side chains and bases. Combining this structure with other crystal structures of other AhrC components, we have constructed a model of the repression complex of AhrC at the
B. subtilis biosynthetic
argC operator and, along with transcriptome data, analysed the origins of sequence specificity and arginine activation. |
doi_str_mv | 10.1016/j.jmb.2008.03.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69202028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283608002982</els_id><sourcerecordid>69202028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e22ee634bf05baf81d35139fe52b5fbc52a010ee6cf355d637d8ee5ec81784da3</originalsourceid><addsrcrecordid>eNqFkEFP3DAQRq2qCJaFH9BL5VNvScf2OuuoJ7pioRISUgGJm-U449arJA62U8G_J2hX4lY0h7m87x0eIV8YlAxY9X1X7vqm5ACqBFECrD-RBQNVF6oS6jNZAHBecCWqE3Ka0g4ApFipY3LC1EpKpqoFebzLcbJ5ikjN0NLtNNjsw0CDo_kv0ov4xw9-QPobx4gphVjcjhhNDpFuQj92-ExdDD39aazvuinRNDXZdz6dkSNnuoTnh78kD9vL-811cXN79WtzcVNYoXgukHPESqwaB7IxTrFWSCZqh5I30jVWcgMMZsQ6IWVbiXWrECVaxdZq1RqxJN_23jGGpwlT1r1PFrvODBimpKuaw3zqQ5BDDbxW6xlke9DGkFJEp8foexNfNAP91l3v9Nxdv3XXIPTcfd58Pcinpsf2fXEIPQM_9gDOLf55jDpZj4PF1ke0WbfB_0f_CqNYlE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20902987</pqid></control><display><type>article</type><title>Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Garnett, James A. ; Marincs, Ferenc ; Baumberg, Simon ; Stockley, Peter G. ; Phillips, Simon E.V.</creator><creatorcontrib>Garnett, James A. ; Marincs, Ferenc ; Baumberg, Simon ; Stockley, Peter G. ; Phillips, Simon E.V.</creatorcontrib><description>In many bacteria, the concentration of L-arginine is controlled by a transcriptional regulator, the arginine repressor. In
Bacillus subtilis this transcription factor is called AhrC and has roles in both the repression and activation of the genes involved in arginine metabolism. It interacts with 18 bp ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a hexamer and each subunit has two domains. The C-terminal domains form the core, mediating inter-subunit interactions and L-arginine binding, while the N-terminal domains contain a winged helix-turn-helix DNA-binding motif and are arranged around the periphery. Upon binding of the co-repressor L-arginine there is a ∼
15° relative rotation between core C-terminal trimers. Here, we report the X-ray crystal structure of a dimer of the N-terminal domains of AhrC (NAhrC) in complex with an 18 bp DNA ARG box operator, refined to 2.85 Å resolution. Comparison of the N-terminal domains within this complex with those of the free domain reveals that the flexible β-wings of the DNA-binding motif in the free domain form a stable dimer interface in the protein–DNA complex, favouring correct orientation of the recognition helices. These are then positioned to insert into adjacent turns of the major groove of the ARG box, whilst the wings contact the minor groove. There are extensive contacts between the protein and the DNA phosphodiester backbone, as well as a number of direct hydrogen bonds between conserved amino acid side chains and bases. Combining this structure with other crystal structures of other AhrC components, we have constructed a model of the repression complex of AhrC at the
B. subtilis biosynthetic
argC operator and, along with transcriptome data, analysed the origins of sequence specificity and arginine activation.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2008.03.007</identifier><identifier>PMID: 18455186</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Arginine - metabolism ; arginine repressor/activator ; Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; crystal structure ; Crystallography, X-Ray ; Dimerization ; DNA - chemistry ; DNA - metabolism ; gene array ; Gene Expression Regulation, Bacterial ; Models, Molecular ; Molecular Sequence Data ; Operator Regions, Genetic ; Protein Structure, Quaternary ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Sequence Alignment ; structure-function ; Trans-Activators - chemistry ; Trans-Activators - genetics ; Trans-Activators - metabolism ; transcriptional control</subject><ispartof>Journal of molecular biology, 2008-05, Vol.379 (2), p.284-298</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e22ee634bf05baf81d35139fe52b5fbc52a010ee6cf355d637d8ee5ec81784da3</citedby><cites>FETCH-LOGICAL-c382t-e22ee634bf05baf81d35139fe52b5fbc52a010ee6cf355d637d8ee5ec81784da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2008.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18455186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garnett, James A.</creatorcontrib><creatorcontrib>Marincs, Ferenc</creatorcontrib><creatorcontrib>Baumberg, Simon</creatorcontrib><creatorcontrib>Stockley, Peter G.</creatorcontrib><creatorcontrib>Phillips, Simon E.V.</creatorcontrib><title>Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>In many bacteria, the concentration of L-arginine is controlled by a transcriptional regulator, the arginine repressor. In
Bacillus subtilis this transcription factor is called AhrC and has roles in both the repression and activation of the genes involved in arginine metabolism. It interacts with 18 bp ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a hexamer and each subunit has two domains. The C-terminal domains form the core, mediating inter-subunit interactions and L-arginine binding, while the N-terminal domains contain a winged helix-turn-helix DNA-binding motif and are arranged around the periphery. Upon binding of the co-repressor L-arginine there is a ∼
15° relative rotation between core C-terminal trimers. Here, we report the X-ray crystal structure of a dimer of the N-terminal domains of AhrC (NAhrC) in complex with an 18 bp DNA ARG box operator, refined to 2.85 Å resolution. Comparison of the N-terminal domains within this complex with those of the free domain reveals that the flexible β-wings of the DNA-binding motif in the free domain form a stable dimer interface in the protein–DNA complex, favouring correct orientation of the recognition helices. These are then positioned to insert into adjacent turns of the major groove of the ARG box, whilst the wings contact the minor groove. There are extensive contacts between the protein and the DNA phosphodiester backbone, as well as a number of direct hydrogen bonds between conserved amino acid side chains and bases. Combining this structure with other crystal structures of other AhrC components, we have constructed a model of the repression complex of AhrC at the
B. subtilis biosynthetic
argC operator and, along with transcriptome data, analysed the origins of sequence specificity and arginine activation.</description><subject>Amino Acid Sequence</subject><subject>Arginine - metabolism</subject><subject>arginine repressor/activator</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Dimerization</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>gene array</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Operator Regions, Genetic</subject><subject>Protein Structure, Quaternary</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>structure-function</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>transcriptional control</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFP3DAQRq2qCJaFH9BL5VNvScf2OuuoJ7pioRISUgGJm-U449arJA62U8G_J2hX4lY0h7m87x0eIV8YlAxY9X1X7vqm5ACqBFECrD-RBQNVF6oS6jNZAHBecCWqE3Ka0g4ApFipY3LC1EpKpqoFebzLcbJ5ikjN0NLtNNjsw0CDo_kv0ov4xw9-QPobx4gphVjcjhhNDpFuQj92-ExdDD39aazvuinRNDXZdz6dkSNnuoTnh78kD9vL-811cXN79WtzcVNYoXgukHPESqwaB7IxTrFWSCZqh5I30jVWcgMMZsQ6IWVbiXWrECVaxdZq1RqxJN_23jGGpwlT1r1PFrvODBimpKuaw3zqQ5BDDbxW6xlke9DGkFJEp8foexNfNAP91l3v9Nxdv3XXIPTcfd58Pcinpsf2fXEIPQM_9gDOLf55jDpZj4PF1ke0WbfB_0f_CqNYlE0</recordid><startdate>20080529</startdate><enddate>20080529</enddate><creator>Garnett, James A.</creator><creator>Marincs, Ferenc</creator><creator>Baumberg, Simon</creator><creator>Stockley, Peter G.</creator><creator>Phillips, Simon E.V.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20080529</creationdate><title>Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis</title><author>Garnett, James A. ; Marincs, Ferenc ; Baumberg, Simon ; Stockley, Peter G. ; Phillips, Simon E.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e22ee634bf05baf81d35139fe52b5fbc52a010ee6cf355d637d8ee5ec81784da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino Acid Sequence</topic><topic>Arginine - metabolism</topic><topic>arginine repressor/activator</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Dimerization</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>gene array</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Operator Regions, Genetic</topic><topic>Protein Structure, Quaternary</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>structure-function</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>transcriptional control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garnett, James A.</creatorcontrib><creatorcontrib>Marincs, Ferenc</creatorcontrib><creatorcontrib>Baumberg, Simon</creatorcontrib><creatorcontrib>Stockley, Peter G.</creatorcontrib><creatorcontrib>Phillips, Simon E.V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garnett, James A.</au><au>Marincs, Ferenc</au><au>Baumberg, Simon</au><au>Stockley, Peter G.</au><au>Phillips, Simon E.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2008-05-29</date><risdate>2008</risdate><volume>379</volume><issue>2</issue><spage>284</spage><epage>298</epage><pages>284-298</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>In many bacteria, the concentration of L-arginine is controlled by a transcriptional regulator, the arginine repressor. In
Bacillus subtilis this transcription factor is called AhrC and has roles in both the repression and activation of the genes involved in arginine metabolism. It interacts with 18 bp ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a hexamer and each subunit has two domains. The C-terminal domains form the core, mediating inter-subunit interactions and L-arginine binding, while the N-terminal domains contain a winged helix-turn-helix DNA-binding motif and are arranged around the periphery. Upon binding of the co-repressor L-arginine there is a ∼
15° relative rotation between core C-terminal trimers. Here, we report the X-ray crystal structure of a dimer of the N-terminal domains of AhrC (NAhrC) in complex with an 18 bp DNA ARG box operator, refined to 2.85 Å resolution. Comparison of the N-terminal domains within this complex with those of the free domain reveals that the flexible β-wings of the DNA-binding motif in the free domain form a stable dimer interface in the protein–DNA complex, favouring correct orientation of the recognition helices. These are then positioned to insert into adjacent turns of the major groove of the ARG box, whilst the wings contact the minor groove. There are extensive contacts between the protein and the DNA phosphodiester backbone, as well as a number of direct hydrogen bonds between conserved amino acid side chains and bases. Combining this structure with other crystal structures of other AhrC components, we have constructed a model of the repression complex of AhrC at the
B. subtilis biosynthetic
argC operator and, along with transcriptome data, analysed the origins of sequence specificity and arginine activation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18455186</pmid><doi>10.1016/j.jmb.2008.03.007</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2008-05, Vol.379 (2), p.284-298 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_69202028 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Amino Acid Sequence Arginine - metabolism arginine repressor/activator Bacillus subtilis Bacillus subtilis - genetics Bacillus subtilis - metabolism Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism crystal structure Crystallography, X-Ray Dimerization DNA - chemistry DNA - metabolism gene array Gene Expression Regulation, Bacterial Models, Molecular Molecular Sequence Data Operator Regions, Genetic Protein Structure, Quaternary Repressor Proteins - chemistry Repressor Proteins - genetics Repressor Proteins - metabolism Sequence Alignment structure-function Trans-Activators - chemistry Trans-Activators - genetics Trans-Activators - metabolism transcriptional control |
title | Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Function%20of%20the%20Arginine%20Repressor-Operator%20Complex%20from%20Bacillus%20subtilis&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Garnett,%20James%20A.&rft.date=2008-05-29&rft.volume=379&rft.issue=2&rft.spage=284&rft.epage=298&rft.pages=284-298&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2008.03.007&rft_dat=%3Cproquest_cross%3E69202028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20902987&rft_id=info:pmid/18455186&rft_els_id=S0022283608002982&rfr_iscdi=true |