Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis

In many bacteria, the concentration of L-arginine is controlled by a transcriptional regulator, the arginine repressor. In Bacillus subtilis this transcription factor is called AhrC and has roles in both the repression and activation of the genes involved in arginine metabolism. It interacts with 18...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2008-05, Vol.379 (2), p.284-298
Hauptverfasser: Garnett, James A., Marincs, Ferenc, Baumberg, Simon, Stockley, Peter G., Phillips, Simon E.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 2
container_start_page 284
container_title Journal of molecular biology
container_volume 379
creator Garnett, James A.
Marincs, Ferenc
Baumberg, Simon
Stockley, Peter G.
Phillips, Simon E.V.
description In many bacteria, the concentration of L-arginine is controlled by a transcriptional regulator, the arginine repressor. In Bacillus subtilis this transcription factor is called AhrC and has roles in both the repression and activation of the genes involved in arginine metabolism. It interacts with 18 bp ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a hexamer and each subunit has two domains. The C-terminal domains form the core, mediating inter-subunit interactions and L-arginine binding, while the N-terminal domains contain a winged helix-turn-helix DNA-binding motif and are arranged around the periphery. Upon binding of the co-repressor L-arginine there is a ∼ 15° relative rotation between core C-terminal trimers. Here, we report the X-ray crystal structure of a dimer of the N-terminal domains of AhrC (NAhrC) in complex with an 18 bp DNA ARG box operator, refined to 2.85 Å resolution. Comparison of the N-terminal domains within this complex with those of the free domain reveals that the flexible β-wings of the DNA-binding motif in the free domain form a stable dimer interface in the protein–DNA complex, favouring correct orientation of the recognition helices. These are then positioned to insert into adjacent turns of the major groove of the ARG box, whilst the wings contact the minor groove. There are extensive contacts between the protein and the DNA phosphodiester backbone, as well as a number of direct hydrogen bonds between conserved amino acid side chains and bases. Combining this structure with other crystal structures of other AhrC components, we have constructed a model of the repression complex of AhrC at the B. subtilis biosynthetic argC operator and, along with transcriptome data, analysed the origins of sequence specificity and arginine activation.
doi_str_mv 10.1016/j.jmb.2008.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69202028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283608002982</els_id><sourcerecordid>69202028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e22ee634bf05baf81d35139fe52b5fbc52a010ee6cf355d637d8ee5ec81784da3</originalsourceid><addsrcrecordid>eNqFkEFP3DAQRq2qCJaFH9BL5VNvScf2OuuoJ7pioRISUgGJm-U449arJA62U8G_J2hX4lY0h7m87x0eIV8YlAxY9X1X7vqm5ACqBFECrD-RBQNVF6oS6jNZAHBecCWqE3Ka0g4ApFipY3LC1EpKpqoFebzLcbJ5ikjN0NLtNNjsw0CDo_kv0ov4xw9-QPobx4gphVjcjhhNDpFuQj92-ExdDD39aazvuinRNDXZdz6dkSNnuoTnh78kD9vL-811cXN79WtzcVNYoXgukHPESqwaB7IxTrFWSCZqh5I30jVWcgMMZsQ6IWVbiXWrECVaxdZq1RqxJN_23jGGpwlT1r1PFrvODBimpKuaw3zqQ5BDDbxW6xlke9DGkFJEp8foexNfNAP91l3v9Nxdv3XXIPTcfd58Pcinpsf2fXEIPQM_9gDOLf55jDpZj4PF1ke0WbfB_0f_CqNYlE0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20902987</pqid></control><display><type>article</type><title>Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Garnett, James A. ; Marincs, Ferenc ; Baumberg, Simon ; Stockley, Peter G. ; Phillips, Simon E.V.</creator><creatorcontrib>Garnett, James A. ; Marincs, Ferenc ; Baumberg, Simon ; Stockley, Peter G. ; Phillips, Simon E.V.</creatorcontrib><description>In many bacteria, the concentration of L-arginine is controlled by a transcriptional regulator, the arginine repressor. In Bacillus subtilis this transcription factor is called AhrC and has roles in both the repression and activation of the genes involved in arginine metabolism. It interacts with 18 bp ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a hexamer and each subunit has two domains. The C-terminal domains form the core, mediating inter-subunit interactions and L-arginine binding, while the N-terminal domains contain a winged helix-turn-helix DNA-binding motif and are arranged around the periphery. Upon binding of the co-repressor L-arginine there is a ∼ 15° relative rotation between core C-terminal trimers. Here, we report the X-ray crystal structure of a dimer of the N-terminal domains of AhrC (NAhrC) in complex with an 18 bp DNA ARG box operator, refined to 2.85 Å resolution. Comparison of the N-terminal domains within this complex with those of the free domain reveals that the flexible β-wings of the DNA-binding motif in the free domain form a stable dimer interface in the protein–DNA complex, favouring correct orientation of the recognition helices. These are then positioned to insert into adjacent turns of the major groove of the ARG box, whilst the wings contact the minor groove. There are extensive contacts between the protein and the DNA phosphodiester backbone, as well as a number of direct hydrogen bonds between conserved amino acid side chains and bases. Combining this structure with other crystal structures of other AhrC components, we have constructed a model of the repression complex of AhrC at the B. subtilis biosynthetic argC operator and, along with transcriptome data, analysed the origins of sequence specificity and arginine activation.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2008.03.007</identifier><identifier>PMID: 18455186</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Arginine - metabolism ; arginine repressor/activator ; Bacillus subtilis ; Bacillus subtilis - genetics ; Bacillus subtilis - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; crystal structure ; Crystallography, X-Ray ; Dimerization ; DNA - chemistry ; DNA - metabolism ; gene array ; Gene Expression Regulation, Bacterial ; Models, Molecular ; Molecular Sequence Data ; Operator Regions, Genetic ; Protein Structure, Quaternary ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Sequence Alignment ; structure-function ; Trans-Activators - chemistry ; Trans-Activators - genetics ; Trans-Activators - metabolism ; transcriptional control</subject><ispartof>Journal of molecular biology, 2008-05, Vol.379 (2), p.284-298</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e22ee634bf05baf81d35139fe52b5fbc52a010ee6cf355d637d8ee5ec81784da3</citedby><cites>FETCH-LOGICAL-c382t-e22ee634bf05baf81d35139fe52b5fbc52a010ee6cf355d637d8ee5ec81784da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2008.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18455186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garnett, James A.</creatorcontrib><creatorcontrib>Marincs, Ferenc</creatorcontrib><creatorcontrib>Baumberg, Simon</creatorcontrib><creatorcontrib>Stockley, Peter G.</creatorcontrib><creatorcontrib>Phillips, Simon E.V.</creatorcontrib><title>Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>In many bacteria, the concentration of L-arginine is controlled by a transcriptional regulator, the arginine repressor. In Bacillus subtilis this transcription factor is called AhrC and has roles in both the repression and activation of the genes involved in arginine metabolism. It interacts with 18 bp ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a hexamer and each subunit has two domains. The C-terminal domains form the core, mediating inter-subunit interactions and L-arginine binding, while the N-terminal domains contain a winged helix-turn-helix DNA-binding motif and are arranged around the periphery. Upon binding of the co-repressor L-arginine there is a ∼ 15° relative rotation between core C-terminal trimers. Here, we report the X-ray crystal structure of a dimer of the N-terminal domains of AhrC (NAhrC) in complex with an 18 bp DNA ARG box operator, refined to 2.85 Å resolution. Comparison of the N-terminal domains within this complex with those of the free domain reveals that the flexible β-wings of the DNA-binding motif in the free domain form a stable dimer interface in the protein–DNA complex, favouring correct orientation of the recognition helices. These are then positioned to insert into adjacent turns of the major groove of the ARG box, whilst the wings contact the minor groove. There are extensive contacts between the protein and the DNA phosphodiester backbone, as well as a number of direct hydrogen bonds between conserved amino acid side chains and bases. Combining this structure with other crystal structures of other AhrC components, we have constructed a model of the repression complex of AhrC at the B. subtilis biosynthetic argC operator and, along with transcriptome data, analysed the origins of sequence specificity and arginine activation.</description><subject>Amino Acid Sequence</subject><subject>Arginine - metabolism</subject><subject>arginine repressor/activator</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Dimerization</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>gene array</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Operator Regions, Genetic</subject><subject>Protein Structure, Quaternary</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>structure-function</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>transcriptional control</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFP3DAQRq2qCJaFH9BL5VNvScf2OuuoJ7pioRISUgGJm-U449arJA62U8G_J2hX4lY0h7m87x0eIV8YlAxY9X1X7vqm5ACqBFECrD-RBQNVF6oS6jNZAHBecCWqE3Ka0g4ApFipY3LC1EpKpqoFebzLcbJ5ikjN0NLtNNjsw0CDo_kv0ov4xw9-QPobx4gphVjcjhhNDpFuQj92-ExdDD39aazvuinRNDXZdz6dkSNnuoTnh78kD9vL-811cXN79WtzcVNYoXgukHPESqwaB7IxTrFWSCZqh5I30jVWcgMMZsQ6IWVbiXWrECVaxdZq1RqxJN_23jGGpwlT1r1PFrvODBimpKuaw3zqQ5BDDbxW6xlke9DGkFJEp8foexNfNAP91l3v9Nxdv3XXIPTcfd58Pcinpsf2fXEIPQM_9gDOLf55jDpZj4PF1ke0WbfB_0f_CqNYlE0</recordid><startdate>20080529</startdate><enddate>20080529</enddate><creator>Garnett, James A.</creator><creator>Marincs, Ferenc</creator><creator>Baumberg, Simon</creator><creator>Stockley, Peter G.</creator><creator>Phillips, Simon E.V.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20080529</creationdate><title>Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis</title><author>Garnett, James A. ; Marincs, Ferenc ; Baumberg, Simon ; Stockley, Peter G. ; Phillips, Simon E.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e22ee634bf05baf81d35139fe52b5fbc52a010ee6cf355d637d8ee5ec81784da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino Acid Sequence</topic><topic>Arginine - metabolism</topic><topic>arginine repressor/activator</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Dimerization</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>gene array</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Operator Regions, Genetic</topic><topic>Protein Structure, Quaternary</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>structure-function</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>transcriptional control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garnett, James A.</creatorcontrib><creatorcontrib>Marincs, Ferenc</creatorcontrib><creatorcontrib>Baumberg, Simon</creatorcontrib><creatorcontrib>Stockley, Peter G.</creatorcontrib><creatorcontrib>Phillips, Simon E.V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garnett, James A.</au><au>Marincs, Ferenc</au><au>Baumberg, Simon</au><au>Stockley, Peter G.</au><au>Phillips, Simon E.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2008-05-29</date><risdate>2008</risdate><volume>379</volume><issue>2</issue><spage>284</spage><epage>298</epage><pages>284-298</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>In many bacteria, the concentration of L-arginine is controlled by a transcriptional regulator, the arginine repressor. In Bacillus subtilis this transcription factor is called AhrC and has roles in both the repression and activation of the genes involved in arginine metabolism. It interacts with 18 bp ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a hexamer and each subunit has two domains. The C-terminal domains form the core, mediating inter-subunit interactions and L-arginine binding, while the N-terminal domains contain a winged helix-turn-helix DNA-binding motif and are arranged around the periphery. Upon binding of the co-repressor L-arginine there is a ∼ 15° relative rotation between core C-terminal trimers. Here, we report the X-ray crystal structure of a dimer of the N-terminal domains of AhrC (NAhrC) in complex with an 18 bp DNA ARG box operator, refined to 2.85 Å resolution. Comparison of the N-terminal domains within this complex with those of the free domain reveals that the flexible β-wings of the DNA-binding motif in the free domain form a stable dimer interface in the protein–DNA complex, favouring correct orientation of the recognition helices. These are then positioned to insert into adjacent turns of the major groove of the ARG box, whilst the wings contact the minor groove. There are extensive contacts between the protein and the DNA phosphodiester backbone, as well as a number of direct hydrogen bonds between conserved amino acid side chains and bases. Combining this structure with other crystal structures of other AhrC components, we have constructed a model of the repression complex of AhrC at the B. subtilis biosynthetic argC operator and, along with transcriptome data, analysed the origins of sequence specificity and arginine activation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18455186</pmid><doi>10.1016/j.jmb.2008.03.007</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2008-05, Vol.379 (2), p.284-298
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_69202028
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Amino Acid Sequence
Arginine - metabolism
arginine repressor/activator
Bacillus subtilis
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
crystal structure
Crystallography, X-Ray
Dimerization
DNA - chemistry
DNA - metabolism
gene array
Gene Expression Regulation, Bacterial
Models, Molecular
Molecular Sequence Data
Operator Regions, Genetic
Protein Structure, Quaternary
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
Sequence Alignment
structure-function
Trans-Activators - chemistry
Trans-Activators - genetics
Trans-Activators - metabolism
transcriptional control
title Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Function%20of%20the%20Arginine%20Repressor-Operator%20Complex%20from%20Bacillus%20subtilis&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Garnett,%20James%20A.&rft.date=2008-05-29&rft.volume=379&rft.issue=2&rft.spage=284&rft.epage=298&rft.pages=284-298&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2008.03.007&rft_dat=%3Cproquest_cross%3E69202028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20902987&rft_id=info:pmid/18455186&rft_els_id=S0022283608002982&rfr_iscdi=true