Models to predict the intensity of Plasmodium falciparum transmission: applications to the burden of disease in Kenya

There is an increasing need to provide spatial distribution maps of the clinical burden of Plasmodium falciparum malaria in Africa. Recent evidence suggests that risk groups and the clinical spectrum of severe malaria are related to the intensity of P. falciparum transmission. Climate operates to af...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Royal Society of Tropical Medicine and Hygiene 1998-11, Vol.92 (6), p.601-606
Hauptverfasser: Snow, R.W., Gouws, E., Omumbo, J., Rapuoda, B., Craig, M.H., Tanser, F.C., le Sueur, D., Ouma, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue 6
container_start_page 601
container_title Transactions of the Royal Society of Tropical Medicine and Hygiene
container_volume 92
creator Snow, R.W.
Gouws, E.
Omumbo, J.
Rapuoda, B.
Craig, M.H.
Tanser, F.C.
le Sueur, D.
Ouma, J.
description There is an increasing need to provide spatial distribution maps of the clinical burden of Plasmodium falciparum malaria in Africa. Recent evidence suggests that risk groups and the clinical spectrum of severe malaria are related to the intensity of P. falciparum transmission. Climate operates to affect the vectorial capacity of P. falciparum transmission and this is particularly important in the Horn of Africa and parts of East Africa. We have used a fuzzy logic climate suitability model to define areas of Kenya unsuitable for stable transmission. Kenya's unstable transmission areas can be divided into areas where transmission potential is limited by low rainfall or low temperature and, combined, encompass over 8 million people. Among areas of stable transmission we have used empirical data on P. falciparum infection rates among 124 childhood populations in Kenya to develop a climate-based statistical model of transmission intensity. This model correctly identified 75% (95% confidence interval CI 70–85) of 3 endemicity classes (low,
doi_str_mv 10.1016/S0035-9203(98)90781-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69200988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0035920398907817</els_id><sourcerecordid>69200988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e42022247cf7e56954331a2f35a5818ce80c30d9917f8409349b48a485df8e483</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCTwDlgCo4BPwRJzYXhKq2i7p8SBQJ9WJ5nYkw5KseB7H_vs5mVbhxsi0_88zoHUKeMfqaUVa--UqpkLnmVLzU6pWmlWJ59YCsmKpULiQVD8nqHjkix4g_KeWSSf2YHDEqeMkoXZHp41BDi1kcsjFA7V3M4g_IfB-hRx932dBkX1qL3VD7qcsa2zo_2pCuMdgeO4_oh_5tZsex9c7G9NjLZsl2CjX0s6H2CBZnbXYF_c4-IY-SCeHp4Twh3y7Or8_W-ebz5Yez95vcFVzFHApOOedF5ZoKZKllIQSzvBHSSsWUA0WdoLXWrGpUQbUo9LZQtlCybhQUSpyQ08U7huF2AowmDeygbW0Pw4SmTOFQrWZQLqALA2KAxozBdzbsDKNmztvs8zZzmEYrs8_bVKnu-aHBtO2g_qdqCTgBLw6ARWfbJoXmPP7lSsGFnD35gnmM8Of-24ZfpqxEJc36-425uvnErtdiYy4S_27h0-7gt4dg0HnoXdpgABdNPfj_TH4HwVusDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69200988</pqid></control><display><type>article</type><title>Models to predict the intensity of Plasmodium falciparum transmission: applications to the burden of disease in Kenya</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Snow, R.W. ; Gouws, E. ; Omumbo, J. ; Rapuoda, B. ; Craig, M.H. ; Tanser, F.C. ; le Sueur, D. ; Ouma, J.</creator><creatorcontrib>Snow, R.W. ; Gouws, E. ; Omumbo, J. ; Rapuoda, B. ; Craig, M.H. ; Tanser, F.C. ; le Sueur, D. ; Ouma, J.</creatorcontrib><description>There is an increasing need to provide spatial distribution maps of the clinical burden of Plasmodium falciparum malaria in Africa. Recent evidence suggests that risk groups and the clinical spectrum of severe malaria are related to the intensity of P. falciparum transmission. Climate operates to affect the vectorial capacity of P. falciparum transmission and this is particularly important in the Horn of Africa and parts of East Africa. We have used a fuzzy logic climate suitability model to define areas of Kenya unsuitable for stable transmission. Kenya's unstable transmission areas can be divided into areas where transmission potential is limited by low rainfall or low temperature and, combined, encompass over 8 million people. Among areas of stable transmission we have used empirical data on P. falciparum infection rates among 124 childhood populations in Kenya to develop a climate-based statistical model of transmission intensity. This model correctly identified 75% (95% confidence interval CI 70–85) of 3 endemicity classes (low, &lt;20%; high, ≥70%; and intermediate parasite prevalences). The model was applied to meteorological and remote sensed data using a geographical information system to provide estimates of endemicity for all of the 1080 populated fourth level administrative regions in Kenya. National census data for 1989 on the childhood populations within each administrative region were projected to provide 1997 estimates. Endemicity-specific estimates of morbidity and mortality were derived from published and unpublished sources and applied to their corresponding exposed-to-risk childhood populations. This combined transmission, population and disease-risk model suggested that every day in Kenya approximately 72 and 400 children below the age of 5 years either die or develop clinical malaria warranting in-patient care, respectively. Despite several limitations, such an approach goes beyond ‘best guesses’ to provide informed estimates of the geographical burden of malaria and its fatal consequences in Kenya.</description><identifier>ISSN: 0035-9203</identifier><identifier>EISSN: 1878-3503</identifier><identifier>DOI: 10.1016/S0035-9203(98)90781-7</identifier><identifier>PMID: 10326100</identifier><identifier>CODEN: TRSTAZ</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological and medical sciences ; Child, Preschool ; Endemic Diseases - statistics &amp; numerical data ; geographical information system ; Human protozoal diseases ; Humans ; Infectious diseases ; Kenya ; Kenya - epidemiology ; Malaria ; Malaria, Falciparum - epidemiology ; Malaria, Falciparum - transmission ; Medical sciences ; Models, Biological ; Parasitic diseases ; Plasmodium falciparum ; Prevalence ; Protozoal diseases ; Risk Assessment ; Rural Health - statistics &amp; numerical data ; Seasons ; transmission intensity ; Tropical medicine</subject><ispartof>Transactions of the Royal Society of Tropical Medicine and Hygiene, 1998-11, Vol.92 (6), p.601-606</ispartof><rights>1998</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e42022247cf7e56954331a2f35a5818ce80c30d9917f8409349b48a485df8e483</citedby><cites>FETCH-LOGICAL-c428t-e42022247cf7e56954331a2f35a5818ce80c30d9917f8409349b48a485df8e483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1632357$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10326100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snow, R.W.</creatorcontrib><creatorcontrib>Gouws, E.</creatorcontrib><creatorcontrib>Omumbo, J.</creatorcontrib><creatorcontrib>Rapuoda, B.</creatorcontrib><creatorcontrib>Craig, M.H.</creatorcontrib><creatorcontrib>Tanser, F.C.</creatorcontrib><creatorcontrib>le Sueur, D.</creatorcontrib><creatorcontrib>Ouma, J.</creatorcontrib><title>Models to predict the intensity of Plasmodium falciparum transmission: applications to the burden of disease in Kenya</title><title>Transactions of the Royal Society of Tropical Medicine and Hygiene</title><addtitle>Trans R Soc Trop Med Hyg</addtitle><description>There is an increasing need to provide spatial distribution maps of the clinical burden of Plasmodium falciparum malaria in Africa. Recent evidence suggests that risk groups and the clinical spectrum of severe malaria are related to the intensity of P. falciparum transmission. Climate operates to affect the vectorial capacity of P. falciparum transmission and this is particularly important in the Horn of Africa and parts of East Africa. We have used a fuzzy logic climate suitability model to define areas of Kenya unsuitable for stable transmission. Kenya's unstable transmission areas can be divided into areas where transmission potential is limited by low rainfall or low temperature and, combined, encompass over 8 million people. Among areas of stable transmission we have used empirical data on P. falciparum infection rates among 124 childhood populations in Kenya to develop a climate-based statistical model of transmission intensity. This model correctly identified 75% (95% confidence interval CI 70–85) of 3 endemicity classes (low, &lt;20%; high, ≥70%; and intermediate parasite prevalences). The model was applied to meteorological and remote sensed data using a geographical information system to provide estimates of endemicity for all of the 1080 populated fourth level administrative regions in Kenya. National census data for 1989 on the childhood populations within each administrative region were projected to provide 1997 estimates. Endemicity-specific estimates of morbidity and mortality were derived from published and unpublished sources and applied to their corresponding exposed-to-risk childhood populations. This combined transmission, population and disease-risk model suggested that every day in Kenya approximately 72 and 400 children below the age of 5 years either die or develop clinical malaria warranting in-patient care, respectively. Despite several limitations, such an approach goes beyond ‘best guesses’ to provide informed estimates of the geographical burden of malaria and its fatal consequences in Kenya.</description><subject>Biological and medical sciences</subject><subject>Child, Preschool</subject><subject>Endemic Diseases - statistics &amp; numerical data</subject><subject>geographical information system</subject><subject>Human protozoal diseases</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Kenya</subject><subject>Kenya - epidemiology</subject><subject>Malaria</subject><subject>Malaria, Falciparum - epidemiology</subject><subject>Malaria, Falciparum - transmission</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Parasitic diseases</subject><subject>Plasmodium falciparum</subject><subject>Prevalence</subject><subject>Protozoal diseases</subject><subject>Risk Assessment</subject><subject>Rural Health - statistics &amp; numerical data</subject><subject>Seasons</subject><subject>transmission intensity</subject><subject>Tropical medicine</subject><issn>0035-9203</issn><issn>1878-3503</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EotvCTwDlgCo4BPwRJzYXhKq2i7p8SBQJ9WJ5nYkw5KseB7H_vs5mVbhxsi0_88zoHUKeMfqaUVa--UqpkLnmVLzU6pWmlWJ59YCsmKpULiQVD8nqHjkix4g_KeWSSf2YHDEqeMkoXZHp41BDi1kcsjFA7V3M4g_IfB-hRx932dBkX1qL3VD7qcsa2zo_2pCuMdgeO4_oh_5tZsex9c7G9NjLZsl2CjX0s6H2CBZnbXYF_c4-IY-SCeHp4Twh3y7Or8_W-ebz5Yez95vcFVzFHApOOedF5ZoKZKllIQSzvBHSSsWUA0WdoLXWrGpUQbUo9LZQtlCybhQUSpyQ08U7huF2AowmDeygbW0Pw4SmTOFQrWZQLqALA2KAxozBdzbsDKNmztvs8zZzmEYrs8_bVKnu-aHBtO2g_qdqCTgBLw6ARWfbJoXmPP7lSsGFnD35gnmM8Of-24ZfpqxEJc36-425uvnErtdiYy4S_27h0-7gt4dg0HnoXdpgABdNPfj_TH4HwVusDg</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Snow, R.W.</creator><creator>Gouws, E.</creator><creator>Omumbo, J.</creator><creator>Rapuoda, B.</creator><creator>Craig, M.H.</creator><creator>Tanser, F.C.</creator><creator>le Sueur, D.</creator><creator>Ouma, J.</creator><general>Elsevier Ltd</general><general>Royal Society of Tropical Medicine and Hygiene</general><general>Elsevier</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19981101</creationdate><title>Models to predict the intensity of Plasmodium falciparum transmission: applications to the burden of disease in Kenya</title><author>Snow, R.W. ; Gouws, E. ; Omumbo, J. ; Rapuoda, B. ; Craig, M.H. ; Tanser, F.C. ; le Sueur, D. ; Ouma, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e42022247cf7e56954331a2f35a5818ce80c30d9917f8409349b48a485df8e483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Biological and medical sciences</topic><topic>Child, Preschool</topic><topic>Endemic Diseases - statistics &amp; numerical data</topic><topic>geographical information system</topic><topic>Human protozoal diseases</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Kenya</topic><topic>Kenya - epidemiology</topic><topic>Malaria</topic><topic>Malaria, Falciparum - epidemiology</topic><topic>Malaria, Falciparum - transmission</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Parasitic diseases</topic><topic>Plasmodium falciparum</topic><topic>Prevalence</topic><topic>Protozoal diseases</topic><topic>Risk Assessment</topic><topic>Rural Health - statistics &amp; numerical data</topic><topic>Seasons</topic><topic>transmission intensity</topic><topic>Tropical medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snow, R.W.</creatorcontrib><creatorcontrib>Gouws, E.</creatorcontrib><creatorcontrib>Omumbo, J.</creatorcontrib><creatorcontrib>Rapuoda, B.</creatorcontrib><creatorcontrib>Craig, M.H.</creatorcontrib><creatorcontrib>Tanser, F.C.</creatorcontrib><creatorcontrib>le Sueur, D.</creatorcontrib><creatorcontrib>Ouma, J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Transactions of the Royal Society of Tropical Medicine and Hygiene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snow, R.W.</au><au>Gouws, E.</au><au>Omumbo, J.</au><au>Rapuoda, B.</au><au>Craig, M.H.</au><au>Tanser, F.C.</au><au>le Sueur, D.</au><au>Ouma, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models to predict the intensity of Plasmodium falciparum transmission: applications to the burden of disease in Kenya</atitle><jtitle>Transactions of the Royal Society of Tropical Medicine and Hygiene</jtitle><addtitle>Trans R Soc Trop Med Hyg</addtitle><date>1998-11-01</date><risdate>1998</risdate><volume>92</volume><issue>6</issue><spage>601</spage><epage>606</epage><pages>601-606</pages><issn>0035-9203</issn><eissn>1878-3503</eissn><coden>TRSTAZ</coden><abstract>There is an increasing need to provide spatial distribution maps of the clinical burden of Plasmodium falciparum malaria in Africa. Recent evidence suggests that risk groups and the clinical spectrum of severe malaria are related to the intensity of P. falciparum transmission. Climate operates to affect the vectorial capacity of P. falciparum transmission and this is particularly important in the Horn of Africa and parts of East Africa. We have used a fuzzy logic climate suitability model to define areas of Kenya unsuitable for stable transmission. Kenya's unstable transmission areas can be divided into areas where transmission potential is limited by low rainfall or low temperature and, combined, encompass over 8 million people. Among areas of stable transmission we have used empirical data on P. falciparum infection rates among 124 childhood populations in Kenya to develop a climate-based statistical model of transmission intensity. This model correctly identified 75% (95% confidence interval CI 70–85) of 3 endemicity classes (low, &lt;20%; high, ≥70%; and intermediate parasite prevalences). The model was applied to meteorological and remote sensed data using a geographical information system to provide estimates of endemicity for all of the 1080 populated fourth level administrative regions in Kenya. National census data for 1989 on the childhood populations within each administrative region were projected to provide 1997 estimates. Endemicity-specific estimates of morbidity and mortality were derived from published and unpublished sources and applied to their corresponding exposed-to-risk childhood populations. This combined transmission, population and disease-risk model suggested that every day in Kenya approximately 72 and 400 children below the age of 5 years either die or develop clinical malaria warranting in-patient care, respectively. Despite several limitations, such an approach goes beyond ‘best guesses’ to provide informed estimates of the geographical burden of malaria and its fatal consequences in Kenya.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>10326100</pmid><doi>10.1016/S0035-9203(98)90781-7</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9203
ispartof Transactions of the Royal Society of Tropical Medicine and Hygiene, 1998-11, Vol.92 (6), p.601-606
issn 0035-9203
1878-3503
language eng
recordid cdi_proquest_miscellaneous_69200988
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Alma/SFX Local Collection
subjects Biological and medical sciences
Child, Preschool
Endemic Diseases - statistics & numerical data
geographical information system
Human protozoal diseases
Humans
Infectious diseases
Kenya
Kenya - epidemiology
Malaria
Malaria, Falciparum - epidemiology
Malaria, Falciparum - transmission
Medical sciences
Models, Biological
Parasitic diseases
Plasmodium falciparum
Prevalence
Protozoal diseases
Risk Assessment
Rural Health - statistics & numerical data
Seasons
transmission intensity
Tropical medicine
title Models to predict the intensity of Plasmodium falciparum transmission: applications to the burden of disease in Kenya
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20to%20predict%20the%20intensity%20of%20Plasmodium%20falciparum%20transmission:%20applications%20to%20the%20burden%20of%20disease%20in%20Kenya&rft.jtitle=Transactions%20of%20the%20Royal%20Society%20of%20Tropical%20Medicine%20and%20Hygiene&rft.au=Snow,%20R.W.&rft.date=1998-11-01&rft.volume=92&rft.issue=6&rft.spage=601&rft.epage=606&rft.pages=601-606&rft.issn=0035-9203&rft.eissn=1878-3503&rft.coden=TRSTAZ&rft_id=info:doi/10.1016/S0035-9203(98)90781-7&rft_dat=%3Cproquest_cross%3E69200988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69200988&rft_id=info:pmid/10326100&rft_els_id=S0035920398907817&rfr_iscdi=true