Hypothesis Testing in Comparative and Experimental Studies of Function-Valued Traits

Many traits of evolutionary interest, when placed in their developmental, physiological, or environmental contexts, are function-valued. For instance, gene expression during development is typically a function of the age of an organism and physiological processes are often a function of environment....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2008-05, Vol.62 (5), p.1229-1242
Hauptverfasser: Griswold, Cortland K., Gomulkiewicz, Richard, Heckman, Nancy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1242
container_issue 5
container_start_page 1229
container_title Evolution
container_volume 62
creator Griswold, Cortland K.
Gomulkiewicz, Richard
Heckman, Nancy
description Many traits of evolutionary interest, when placed in their developmental, physiological, or environmental contexts, are function-valued. For instance, gene expression during development is typically a function of the age of an organism and physiological processes are often a function of environment. In comparative and experimental studies, a fundamental question is whether the function-valued trait of one group is different from another. To address this question, evolutionary biologists have several statistical methods available. These methods can be classified into one of two types: multivariate and functional. Multivariate methods, including univariate repeated-measures analysis of variance (ANOVA), treat each trait as a finite list of data. Functional methods, such as repeated-measures regression, view the data as a sample of points drawn from an underlying function. A key difference between multivariate and functional methods is that functional methods retain information about the ordering and spacing of a set of data values, information that is discarded by multivariate methods. In this study, we evaluated the importance of that discarded information in statistical analyses of function-valued traits. Our results indicate that functional methods tend to have substantially greater statistical power than multivariate approaches to detect differences in a function-valued trait between groups.
doi_str_mv 10.1111/j.1558-5646.2008.00340.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_69184819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30134278</jstor_id><sourcerecordid>30134278</sourcerecordid><originalsourceid>FETCH-LOGICAL-b5310-f633347a28515341906e568b074dcee44091893da0433c2076c27e515d4c071f3</originalsourceid><addsrcrecordid>eNqNkc2O0zAUhS0EYsrAI4AsFuwSruOfOBIbVDot0ohZUAaJjeUmDjikcbATaN9-nElVJDaMN7Z0vnN1jw9CmEBK4nnbpIRzmXDBRJoByBSAMkgPj9DiLDxGCwDCEiozuEDPQmgAoOCkeIouiMyEKAqyQNvNsXfDDxNswFsTBtt9x7bDS7fvtdeD_W2w7iq8OvTG273pBt3iz8NYWROwq_HV2JWDdV1yq9vRVHjrtR3Cc_Sk1m0wL073JfpytdouN8n1zfrj8v11suOUQFILSinLdSY54ZSRAoThQu4gZ1VpDGNQEFnQSgOjtMwgF2WWm8hWrISc1PQSvZnn9t79GuP2am9DadpWd8aNQYnoZ5IU_wUjQiXlMoKv_wEbN_ouhlBZlgOPO-QRkjNUeheCN7Xq499of1QE1NSPatRUg5pqUFM_6r4fdYjWV6f5425vqr_GUyEReDcDf2xrjg8erFa3N_ER7S9nexMG5892CoSyLJ_yJbNuw2AOZ137nyoGy7n6-mmtvn2Qm-WaM0UjL2Z-Z53rzMOD3gEyn8TP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227050767</pqid></control><display><type>article</type><title>Hypothesis Testing in Comparative and Experimental Studies of Function-Valued Traits</title><source>MEDLINE</source><source>BioOne Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Griswold, Cortland K. ; Gomulkiewicz, Richard ; Heckman, Nancy</creator><contributor>Promislow, D</contributor><creatorcontrib>Griswold, Cortland K. ; Gomulkiewicz, Richard ; Heckman, Nancy ; Promislow, D</creatorcontrib><description>Many traits of evolutionary interest, when placed in their developmental, physiological, or environmental contexts, are function-valued. For instance, gene expression during development is typically a function of the age of an organism and physiological processes are often a function of environment. In comparative and experimental studies, a fundamental question is whether the function-valued trait of one group is different from another. To address this question, evolutionary biologists have several statistical methods available. These methods can be classified into one of two types: multivariate and functional. Multivariate methods, including univariate repeated-measures analysis of variance (ANOVA), treat each trait as a finite list of data. Functional methods, such as repeated-measures regression, view the data as a sample of points drawn from an underlying function. A key difference between multivariate and functional methods is that functional methods retain information about the ordering and spacing of a set of data values, information that is discarded by multivariate methods. In this study, we evaluated the importance of that discarded information in statistical analyses of function-valued traits. Our results indicate that functional methods tend to have substantially greater statistical power than multivariate approaches to detect differences in a function-valued trait between groups.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/j.1558-5646.2008.00340.x</identifier><identifier>PMID: 18266991</identifier><language>eng</language><publisher>Malden, USA: Blackwell Science Inc</publisher><subject>Analysis of Variance ; Animals ; Biological Evolution ; Comparative studies ; Datasets ; Evolution ; Evolutionary biology ; Functional data analysis ; Gene expression ; Mathematical functions ; Mathematical independent variables ; Modeling ; Models, Biological ; Models, Statistical ; Multivariate analysis ; Null hypothesis ; Organisms ; Original s ; Parametric models ; phenotype ; Phenotypic traits ; Population parameters ; power ; Quantitative Trait, Heritable ; repeated-measures ANOVA ; repeated-measures regression ; Statistics ; Statistics, Nonparametric ; Variance analysis</subject><ispartof>Evolution, 2008-05, Vol.62 (5), p.1229-1242</ispartof><rights>2008 The Author(s). Journal compilation © 2008 The Society for the Study of Evolution</rights><rights>Copyright 2008 The Society for the Study of Evolution</rights><rights>Copyright Society for the Study of Evolution May 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b5310-f633347a28515341906e568b074dcee44091893da0433c2076c27e515d4c071f3</citedby><cites>FETCH-LOGICAL-b5310-f633347a28515341906e568b074dcee44091893da0433c2076c27e515d4c071f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1111/j.1558-5646.2008.00340.x$$EPDF$$P50$$Gbioone$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30134278$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,26978,27924,27925,45574,45575,52363,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18266991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Promislow, D</contributor><creatorcontrib>Griswold, Cortland K.</creatorcontrib><creatorcontrib>Gomulkiewicz, Richard</creatorcontrib><creatorcontrib>Heckman, Nancy</creatorcontrib><title>Hypothesis Testing in Comparative and Experimental Studies of Function-Valued Traits</title><title>Evolution</title><addtitle>Evolution</addtitle><description>Many traits of evolutionary interest, when placed in their developmental, physiological, or environmental contexts, are function-valued. For instance, gene expression during development is typically a function of the age of an organism and physiological processes are often a function of environment. In comparative and experimental studies, a fundamental question is whether the function-valued trait of one group is different from another. To address this question, evolutionary biologists have several statistical methods available. These methods can be classified into one of two types: multivariate and functional. Multivariate methods, including univariate repeated-measures analysis of variance (ANOVA), treat each trait as a finite list of data. Functional methods, such as repeated-measures regression, view the data as a sample of points drawn from an underlying function. A key difference between multivariate and functional methods is that functional methods retain information about the ordering and spacing of a set of data values, information that is discarded by multivariate methods. In this study, we evaluated the importance of that discarded information in statistical analyses of function-valued traits. Our results indicate that functional methods tend to have substantially greater statistical power than multivariate approaches to detect differences in a function-valued trait between groups.</description><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Comparative studies</subject><subject>Datasets</subject><subject>Evolution</subject><subject>Evolutionary biology</subject><subject>Functional data analysis</subject><subject>Gene expression</subject><subject>Mathematical functions</subject><subject>Mathematical independent variables</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Multivariate analysis</subject><subject>Null hypothesis</subject><subject>Organisms</subject><subject>Original s</subject><subject>Parametric models</subject><subject>phenotype</subject><subject>Phenotypic traits</subject><subject>Population parameters</subject><subject>power</subject><subject>Quantitative Trait, Heritable</subject><subject>repeated-measures ANOVA</subject><subject>repeated-measures regression</subject><subject>Statistics</subject><subject>Statistics, Nonparametric</subject><subject>Variance analysis</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc2O0zAUhS0EYsrAI4AsFuwSruOfOBIbVDot0ohZUAaJjeUmDjikcbATaN9-nElVJDaMN7Z0vnN1jw9CmEBK4nnbpIRzmXDBRJoByBSAMkgPj9DiLDxGCwDCEiozuEDPQmgAoOCkeIouiMyEKAqyQNvNsXfDDxNswFsTBtt9x7bDS7fvtdeD_W2w7iq8OvTG273pBt3iz8NYWROwq_HV2JWDdV1yq9vRVHjrtR3Cc_Sk1m0wL073JfpytdouN8n1zfrj8v11suOUQFILSinLdSY54ZSRAoThQu4gZ1VpDGNQEFnQSgOjtMwgF2WWm8hWrISc1PQSvZnn9t79GuP2am9DadpWd8aNQYnoZ5IU_wUjQiXlMoKv_wEbN_ouhlBZlgOPO-QRkjNUeheCN7Xq499of1QE1NSPatRUg5pqUFM_6r4fdYjWV6f5425vqr_GUyEReDcDf2xrjg8erFa3N_ER7S9nexMG5892CoSyLJ_yJbNuw2AOZ137nyoGy7n6-mmtvn2Qm-WaM0UjL2Z-Z53rzMOD3gEyn8TP</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Griswold, Cortland K.</creator><creator>Gomulkiewicz, Richard</creator><creator>Heckman, Nancy</creator><general>Blackwell Science Inc</general><general>Blackwell Publishing Inc</general><general>Blackwell Publishing, Inc</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200805</creationdate><title>Hypothesis Testing in Comparative and Experimental Studies of Function-Valued Traits</title><author>Griswold, Cortland K. ; Gomulkiewicz, Richard ; Heckman, Nancy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b5310-f633347a28515341906e568b074dcee44091893da0433c2076c27e515d4c071f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Comparative studies</topic><topic>Datasets</topic><topic>Evolution</topic><topic>Evolutionary biology</topic><topic>Functional data analysis</topic><topic>Gene expression</topic><topic>Mathematical functions</topic><topic>Mathematical independent variables</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Multivariate analysis</topic><topic>Null hypothesis</topic><topic>Organisms</topic><topic>Original s</topic><topic>Parametric models</topic><topic>phenotype</topic><topic>Phenotypic traits</topic><topic>Population parameters</topic><topic>power</topic><topic>Quantitative Trait, Heritable</topic><topic>repeated-measures ANOVA</topic><topic>repeated-measures regression</topic><topic>Statistics</topic><topic>Statistics, Nonparametric</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griswold, Cortland K.</creatorcontrib><creatorcontrib>Gomulkiewicz, Richard</creatorcontrib><creatorcontrib>Heckman, Nancy</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griswold, Cortland K.</au><au>Gomulkiewicz, Richard</au><au>Heckman, Nancy</au><au>Promislow, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypothesis Testing in Comparative and Experimental Studies of Function-Valued Traits</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2008-05</date><risdate>2008</risdate><volume>62</volume><issue>5</issue><spage>1229</spage><epage>1242</epage><pages>1229-1242</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>Many traits of evolutionary interest, when placed in their developmental, physiological, or environmental contexts, are function-valued. For instance, gene expression during development is typically a function of the age of an organism and physiological processes are often a function of environment. In comparative and experimental studies, a fundamental question is whether the function-valued trait of one group is different from another. To address this question, evolutionary biologists have several statistical methods available. These methods can be classified into one of two types: multivariate and functional. Multivariate methods, including univariate repeated-measures analysis of variance (ANOVA), treat each trait as a finite list of data. Functional methods, such as repeated-measures regression, view the data as a sample of points drawn from an underlying function. A key difference between multivariate and functional methods is that functional methods retain information about the ordering and spacing of a set of data values, information that is discarded by multivariate methods. In this study, we evaluated the importance of that discarded information in statistical analyses of function-valued traits. Our results indicate that functional methods tend to have substantially greater statistical power than multivariate approaches to detect differences in a function-valued trait between groups.</abstract><cop>Malden, USA</cop><pub>Blackwell Science Inc</pub><pmid>18266991</pmid><doi>10.1111/j.1558-5646.2008.00340.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-3820
ispartof Evolution, 2008-05, Vol.62 (5), p.1229-1242
issn 0014-3820
1558-5646
language eng
recordid cdi_proquest_miscellaneous_69184819
source MEDLINE; BioOne Complete; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Analysis of Variance
Animals
Biological Evolution
Comparative studies
Datasets
Evolution
Evolutionary biology
Functional data analysis
Gene expression
Mathematical functions
Mathematical independent variables
Modeling
Models, Biological
Models, Statistical
Multivariate analysis
Null hypothesis
Organisms
Original s
Parametric models
phenotype
Phenotypic traits
Population parameters
power
Quantitative Trait, Heritable
repeated-measures ANOVA
repeated-measures regression
Statistics
Statistics, Nonparametric
Variance analysis
title Hypothesis Testing in Comparative and Experimental Studies of Function-Valued Traits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypothesis%20Testing%20in%20Comparative%20and%20Experimental%20Studies%20of%20Function-Valued%20Traits&rft.jtitle=Evolution&rft.au=Griswold,%20Cortland%20K.&rft.date=2008-05&rft.volume=62&rft.issue=5&rft.spage=1229&rft.epage=1242&rft.pages=1229-1242&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/j.1558-5646.2008.00340.x&rft_dat=%3Cjstor_proqu%3E30134278%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227050767&rft_id=info:pmid/18266991&rft_jstor_id=30134278&rfr_iscdi=true