Neural Networks as "Software Sensors" in Enzyme Engineering

Industrial applications of enzyme technology are rapidly increasing. On-line control of enzyme production processes, however, is difficult owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables and quality attributes. We demonst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 1998-12, Vol.864 (1), p.46-58
Hauptverfasser: LINKO, SUSAN, ZHU, YI-HONG, LINKO, PEKKA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 46
container_title Annals of the New York Academy of Sciences
container_volume 864
creator LINKO, SUSAN
ZHU, YI-HONG
LINKO, PEKKA
description Industrial applications of enzyme technology are rapidly increasing. On-line control of enzyme production processes, however, is difficult owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables and quality attributes. We demonstrate that well-trained feedforward backpropagation neural networks with one hidden layer can be employed to overcome such problems with no need for a priori knowledge of the relationships of the process variables involved. Neural network programs were written in Microsoft Visual C++ for Windows and implemented in a personal computer. The goodness of fit of the trained neural network to the reference data was determined by the coefficient of determination, R2. Case studies of beta-galactosidase, glucoamylase, lipase, and xylanase production processes will be used as examples.
doi_str_mv 10.1111/j.1749-6632.1998.tb10287.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69182131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69182131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-71e4ad46d5247f20e65d2eb34ded07d19a5b58a38b4379764e72e5d30aecbe1b3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGI4j-BdNw8Na6H-1uV0-GAJqQeqhGb5stHUihH7jbBvDX26aEOJc5vM87kzwIjQn2SDuPG48IX7qcM-oRKUOvTgimofAOF2h4ji7REGMh3FBSNkA31m4wJjT0xTUakDYJOJND9BxBY3TuRFDvK7O1jrbOOK5W9V4bcGIobWXs2MlKZ1r-Hgto1zorAUxWrm_R1UrnFu5Oe4Q-Z9OPyau7eJ-_TV4W7pJKXruCgK9Tn6cB9cWKYuBBSiFhfgopFimROkiCULMw8ZmQgvsgKAQpwxqWCZCEjdBDf3dnqp8GbK2KzC4hz3UJVWMVlySkhJEWfOrBpamsNbBSO5MV2hwVwapTpzaq86M6P6pTp07q1KEt35--NEkB6b9q76oF3B7IbA2Hc67NVnHBRKC-ormafRMSxhFTMfsDvVF6TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69182131</pqid></control><display><type>article</type><title>Neural Networks as "Software Sensors" in Enzyme Engineering</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>LINKO, SUSAN ; ZHU, YI-HONG ; LINKO, PEKKA</creator><creatorcontrib>LINKO, SUSAN ; ZHU, YI-HONG ; LINKO, PEKKA</creatorcontrib><description>Industrial applications of enzyme technology are rapidly increasing. On-line control of enzyme production processes, however, is difficult owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables and quality attributes. We demonstrate that well-trained feedforward backpropagation neural networks with one hidden layer can be employed to overcome such problems with no need for a priori knowledge of the relationships of the process variables involved. Neural network programs were written in Microsoft Visual C++ for Windows and implemented in a personal computer. The goodness of fit of the trained neural network to the reference data was determined by the coefficient of determination, R2. Case studies of beta-galactosidase, glucoamylase, lipase, and xylanase production processes will be used as examples.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.1998.tb10287.x</identifier><identifier>PMID: 10075639</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Algorithms ; beta-Galactosidase - genetics ; beta-Galactosidase - metabolism ; Biosensing Techniques - methods ; Enzymes - biosynthesis ; Enzymes - metabolism ; Lipase - genetics ; Lipase - metabolism ; Microcomputers ; Neural Networks (Computer) ; Protein Engineering - methods ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - metabolism ; Software</subject><ispartof>Annals of the New York Academy of Sciences, 1998-12, Vol.864 (1), p.46-58</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-71e4ad46d5247f20e65d2eb34ded07d19a5b58a38b4379764e72e5d30aecbe1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10075639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LINKO, SUSAN</creatorcontrib><creatorcontrib>ZHU, YI-HONG</creatorcontrib><creatorcontrib>LINKO, PEKKA</creatorcontrib><title>Neural Networks as "Software Sensors" in Enzyme Engineering</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Industrial applications of enzyme technology are rapidly increasing. On-line control of enzyme production processes, however, is difficult owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables and quality attributes. We demonstrate that well-trained feedforward backpropagation neural networks with one hidden layer can be employed to overcome such problems with no need for a priori knowledge of the relationships of the process variables involved. Neural network programs were written in Microsoft Visual C++ for Windows and implemented in a personal computer. The goodness of fit of the trained neural network to the reference data was determined by the coefficient of determination, R2. Case studies of beta-galactosidase, glucoamylase, lipase, and xylanase production processes will be used as examples.</description><subject>Algorithms</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - metabolism</subject><subject>Biosensing Techniques - methods</subject><subject>Enzymes - biosynthesis</subject><subject>Enzymes - metabolism</subject><subject>Lipase - genetics</subject><subject>Lipase - metabolism</subject><subject>Microcomputers</subject><subject>Neural Networks (Computer)</subject><subject>Protein Engineering - methods</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - metabolism</subject><subject>Software</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkE1PwkAQhjdGI4j-BdNw8Na6H-1uV0-GAJqQeqhGb5stHUihH7jbBvDX26aEOJc5vM87kzwIjQn2SDuPG48IX7qcM-oRKUOvTgimofAOF2h4ji7REGMh3FBSNkA31m4wJjT0xTUakDYJOJND9BxBY3TuRFDvK7O1jrbOOK5W9V4bcGIobWXs2MlKZ1r-Hgto1zorAUxWrm_R1UrnFu5Oe4Q-Z9OPyau7eJ-_TV4W7pJKXruCgK9Tn6cB9cWKYuBBSiFhfgopFimROkiCULMw8ZmQgvsgKAQpwxqWCZCEjdBDf3dnqp8GbK2KzC4hz3UJVWMVlySkhJEWfOrBpamsNbBSO5MV2hwVwapTpzaq86M6P6pTp07q1KEt35--NEkB6b9q76oF3B7IbA2Hc67NVnHBRKC-ormafRMSxhFTMfsDvVF6TQ</recordid><startdate>19981213</startdate><enddate>19981213</enddate><creator>LINKO, SUSAN</creator><creator>ZHU, YI-HONG</creator><creator>LINKO, PEKKA</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19981213</creationdate><title>Neural Networks as "Software Sensors" in Enzyme Engineering</title><author>LINKO, SUSAN ; ZHU, YI-HONG ; LINKO, PEKKA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-71e4ad46d5247f20e65d2eb34ded07d19a5b58a38b4379764e72e5d30aecbe1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithms</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - metabolism</topic><topic>Biosensing Techniques - methods</topic><topic>Enzymes - biosynthesis</topic><topic>Enzymes - metabolism</topic><topic>Lipase - genetics</topic><topic>Lipase - metabolism</topic><topic>Microcomputers</topic><topic>Neural Networks (Computer)</topic><topic>Protein Engineering - methods</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LINKO, SUSAN</creatorcontrib><creatorcontrib>ZHU, YI-HONG</creatorcontrib><creatorcontrib>LINKO, PEKKA</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LINKO, SUSAN</au><au>ZHU, YI-HONG</au><au>LINKO, PEKKA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Networks as "Software Sensors" in Enzyme Engineering</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>1998-12-13</date><risdate>1998</risdate><volume>864</volume><issue>1</issue><spage>46</spage><epage>58</epage><pages>46-58</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>Industrial applications of enzyme technology are rapidly increasing. On-line control of enzyme production processes, however, is difficult owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables and quality attributes. We demonstrate that well-trained feedforward backpropagation neural networks with one hidden layer can be employed to overcome such problems with no need for a priori knowledge of the relationships of the process variables involved. Neural network programs were written in Microsoft Visual C++ for Windows and implemented in a personal computer. The goodness of fit of the trained neural network to the reference data was determined by the coefficient of determination, R2. Case studies of beta-galactosidase, glucoamylase, lipase, and xylanase production processes will be used as examples.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>10075639</pmid><doi>10.1111/j.1749-6632.1998.tb10287.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 1998-12, Vol.864 (1), p.46-58
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_69182131
source MEDLINE; Wiley Online Library All Journals
subjects Algorithms
beta-Galactosidase - genetics
beta-Galactosidase - metabolism
Biosensing Techniques - methods
Enzymes - biosynthesis
Enzymes - metabolism
Lipase - genetics
Lipase - metabolism
Microcomputers
Neural Networks (Computer)
Protein Engineering - methods
Recombinant Proteins - biosynthesis
Recombinant Proteins - metabolism
Software
title Neural Networks as "Software Sensors" in Enzyme Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Networks%20as%20%22Software%20Sensors%22%20in%20Enzyme%20Engineering&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=LINKO,%20SUSAN&rft.date=1998-12-13&rft.volume=864&rft.issue=1&rft.spage=46&rft.epage=58&rft.pages=46-58&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/j.1749-6632.1998.tb10287.x&rft_dat=%3Cproquest_cross%3E69182131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69182131&rft_id=info:pmid/10075639&rfr_iscdi=true