Haloing, flocculation, and bridging in colloid-nanoparticle suspensions

Integral equation theory with a hybrid closure approximation is employed to study the equilibrium structure of highly size asymmetric mixtures of spherical colloids and nanoparticles. Nonequilibrium contact aggregation and bridging gel formation is also qualitatively discussed. The effect of size as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2008-04, Vol.128 (16), p.164905-164905-15
Hauptverfasser: Scheer, Everett N., Schweizer, Kenneth S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164905-15
container_issue 16
container_start_page 164905
container_title The Journal of chemical physics
container_volume 128
creator Scheer, Everett N.
Schweizer, Kenneth S.
description Integral equation theory with a hybrid closure approximation is employed to study the equilibrium structure of highly size asymmetric mixtures of spherical colloids and nanoparticles. Nonequilibrium contact aggregation and bridging gel formation is also qualitatively discussed. The effect of size asymmetry, nanoparticle volume fraction and charge, and the spatial range, strength, and functional form of colloid-nanoparticle and colloid-colloid attractions in determining the potential-of-mean force (PMF) between the large spheres is systematically explored. For hard, neutral particles with weak colloid-nanoparticle attraction qualitatively distinct forms of the PMF are predicted: (i) a contact depletion attraction, (ii) a repulsive form associated with thermodynamically stable "nanoparticle haloing," and (iii) repulsive at contact but with a strong and tight bridging minimum. As the interfacial cohesion strengthens and becomes shorter range the PMF acquires a deep and tight bridging minimum. At sufficiently high nanoparticle volume fractions, a repulsive barrier then emerges which can provide kinetic stabilization. The charging of nanoparticles can greatly reduce the volume fractions where significant changes of the PMF occur. For direct and interfacial van der Waals attractions, the large qualitative consequences of changing the absolute magnitude of nanoparticle and colloid diameters at fixed size asymmetry ratio are also studied. The theoretical results are compared with recent experimental and simulation studies. Calculations of the real and Fourier space mixture structure at nonzero colloid volume fractions reveal complex spatial reorganization of the nanoparticles due to many body correlations.
doi_str_mv 10.1063/1.2907721
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69158816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69158816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ef972e48b681327a565c99fa38ae9b2467b61e5805389b7961e3a17ed0395c663</originalsourceid><addsrcrecordid>eNp1kD1PwzAQQC0EoqUw8AdQJiSkpvjixB8DA6qgRarEArPlOE5l5NohTgb-PSmJBAvT6XTv3vAQuga8AkzJPawygRnL4ATNAXORMirwKZpjnEEqKKYzdBHjB8YYWJafoxnwPGe54HO02SoXrN8vk9oFrXunOhv8MlG-SsrWVvvhllif6OAGrkq98qFRbWe1M0nsY2N8HB7iJTqrlYvmapoL9P789LbeprvXzcv6cZdqQliXmlqwzOS8pBxIxlRBCy1ErQhXRpRZTllJwRQcF4SLkolhIQqYqTARhaaULNDt6G3a8Nmb2MmDjdo4p7wJfZRUQME5HMG7EdRtiLE1tWxae1DtlwQsj9UkyKnawN5M0r48mOqXnDINwMMIRG27n0L_26ag8k9P8g0HFXtb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69158816</pqid></control><display><type>article</type><title>Haloing, flocculation, and bridging in colloid-nanoparticle suspensions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Scheer, Everett N. ; Schweizer, Kenneth S.</creator><creatorcontrib>Scheer, Everett N. ; Schweizer, Kenneth S.</creatorcontrib><description>Integral equation theory with a hybrid closure approximation is employed to study the equilibrium structure of highly size asymmetric mixtures of spherical colloids and nanoparticles. Nonequilibrium contact aggregation and bridging gel formation is also qualitatively discussed. The effect of size asymmetry, nanoparticle volume fraction and charge, and the spatial range, strength, and functional form of colloid-nanoparticle and colloid-colloid attractions in determining the potential-of-mean force (PMF) between the large spheres is systematically explored. For hard, neutral particles with weak colloid-nanoparticle attraction qualitatively distinct forms of the PMF are predicted: (i) a contact depletion attraction, (ii) a repulsive form associated with thermodynamically stable "nanoparticle haloing," and (iii) repulsive at contact but with a strong and tight bridging minimum. As the interfacial cohesion strengthens and becomes shorter range the PMF acquires a deep and tight bridging minimum. At sufficiently high nanoparticle volume fractions, a repulsive barrier then emerges which can provide kinetic stabilization. The charging of nanoparticles can greatly reduce the volume fractions where significant changes of the PMF occur. For direct and interfacial van der Waals attractions, the large qualitative consequences of changing the absolute magnitude of nanoparticle and colloid diameters at fixed size asymmetry ratio are also studied. The theoretical results are compared with recent experimental and simulation studies. Calculations of the real and Fourier space mixture structure at nonzero colloid volume fractions reveal complex spatial reorganization of the nanoparticles due to many body correlations.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2907721</identifier><identifier>PMID: 18447498</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2008-04, Vol.128 (16), p.164905-164905-15</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ef972e48b681327a565c99fa38ae9b2467b61e5805389b7961e3a17ed0395c663</citedby><cites>FETCH-LOGICAL-c337t-ef972e48b681327a565c99fa38ae9b2467b61e5805389b7961e3a17ed0395c663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18447498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scheer, Everett N.</creatorcontrib><creatorcontrib>Schweizer, Kenneth S.</creatorcontrib><title>Haloing, flocculation, and bridging in colloid-nanoparticle suspensions</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Integral equation theory with a hybrid closure approximation is employed to study the equilibrium structure of highly size asymmetric mixtures of spherical colloids and nanoparticles. Nonequilibrium contact aggregation and bridging gel formation is also qualitatively discussed. The effect of size asymmetry, nanoparticle volume fraction and charge, and the spatial range, strength, and functional form of colloid-nanoparticle and colloid-colloid attractions in determining the potential-of-mean force (PMF) between the large spheres is systematically explored. For hard, neutral particles with weak colloid-nanoparticle attraction qualitatively distinct forms of the PMF are predicted: (i) a contact depletion attraction, (ii) a repulsive form associated with thermodynamically stable "nanoparticle haloing," and (iii) repulsive at contact but with a strong and tight bridging minimum. As the interfacial cohesion strengthens and becomes shorter range the PMF acquires a deep and tight bridging minimum. At sufficiently high nanoparticle volume fractions, a repulsive barrier then emerges which can provide kinetic stabilization. The charging of nanoparticles can greatly reduce the volume fractions where significant changes of the PMF occur. For direct and interfacial van der Waals attractions, the large qualitative consequences of changing the absolute magnitude of nanoparticle and colloid diameters at fixed size asymmetry ratio are also studied. The theoretical results are compared with recent experimental and simulation studies. Calculations of the real and Fourier space mixture structure at nonzero colloid volume fractions reveal complex spatial reorganization of the nanoparticles due to many body correlations.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQQC0EoqUw8AdQJiSkpvjixB8DA6qgRarEArPlOE5l5NohTgb-PSmJBAvT6XTv3vAQuga8AkzJPawygRnL4ATNAXORMirwKZpjnEEqKKYzdBHjB8YYWJafoxnwPGe54HO02SoXrN8vk9oFrXunOhv8MlG-SsrWVvvhllif6OAGrkq98qFRbWe1M0nsY2N8HB7iJTqrlYvmapoL9P789LbeprvXzcv6cZdqQliXmlqwzOS8pBxIxlRBCy1ErQhXRpRZTllJwRQcF4SLkolhIQqYqTARhaaULNDt6G3a8Nmb2MmDjdo4p7wJfZRUQME5HMG7EdRtiLE1tWxae1DtlwQsj9UkyKnawN5M0r48mOqXnDINwMMIRG27n0L_26ag8k9P8g0HFXtb</recordid><startdate>20080428</startdate><enddate>20080428</enddate><creator>Scheer, Everett N.</creator><creator>Schweizer, Kenneth S.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080428</creationdate><title>Haloing, flocculation, and bridging in colloid-nanoparticle suspensions</title><author>Scheer, Everett N. ; Schweizer, Kenneth S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ef972e48b681327a565c99fa38ae9b2467b61e5805389b7961e3a17ed0395c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheer, Everett N.</creatorcontrib><creatorcontrib>Schweizer, Kenneth S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheer, Everett N.</au><au>Schweizer, Kenneth S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haloing, flocculation, and bridging in colloid-nanoparticle suspensions</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2008-04-28</date><risdate>2008</risdate><volume>128</volume><issue>16</issue><spage>164905</spage><epage>164905-15</epage><pages>164905-164905-15</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Integral equation theory with a hybrid closure approximation is employed to study the equilibrium structure of highly size asymmetric mixtures of spherical colloids and nanoparticles. Nonequilibrium contact aggregation and bridging gel formation is also qualitatively discussed. The effect of size asymmetry, nanoparticle volume fraction and charge, and the spatial range, strength, and functional form of colloid-nanoparticle and colloid-colloid attractions in determining the potential-of-mean force (PMF) between the large spheres is systematically explored. For hard, neutral particles with weak colloid-nanoparticle attraction qualitatively distinct forms of the PMF are predicted: (i) a contact depletion attraction, (ii) a repulsive form associated with thermodynamically stable "nanoparticle haloing," and (iii) repulsive at contact but with a strong and tight bridging minimum. As the interfacial cohesion strengthens and becomes shorter range the PMF acquires a deep and tight bridging minimum. At sufficiently high nanoparticle volume fractions, a repulsive barrier then emerges which can provide kinetic stabilization. The charging of nanoparticles can greatly reduce the volume fractions where significant changes of the PMF occur. For direct and interfacial van der Waals attractions, the large qualitative consequences of changing the absolute magnitude of nanoparticle and colloid diameters at fixed size asymmetry ratio are also studied. The theoretical results are compared with recent experimental and simulation studies. Calculations of the real and Fourier space mixture structure at nonzero colloid volume fractions reveal complex spatial reorganization of the nanoparticles due to many body correlations.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>18447498</pmid><doi>10.1063/1.2907721</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2008-04, Vol.128 (16), p.164905-164905-15
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_69158816
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Haloing, flocculation, and bridging in colloid-nanoparticle suspensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haloing,%20flocculation,%20and%20bridging%20in%20colloid-nanoparticle%20suspensions&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Scheer,%20Everett%20N.&rft.date=2008-04-28&rft.volume=128&rft.issue=16&rft.spage=164905&rft.epage=164905-15&rft.pages=164905-164905-15&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2907721&rft_dat=%3Cproquest_cross%3E69158816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69158816&rft_id=info:pmid/18447498&rfr_iscdi=true