Complexity of “A−a” Knob−Hole Fibrin Interaction Revealed by Atomic Force Spectroscopy

During blood vessel injury, fibrinogen is converted to fibrin, a polymer that serves as the structural scaffold of a blood clot. The primary function of fibrin is to withstand the large shear forces in blood and provide mechanical stability to the clot, protecting the wound. Understanding the biophy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2008-05, Vol.24 (9), p.4979-4988
Hauptverfasser: Averett, Laurel E, Geer, Carri B, Fuierer, Ryan R, Akhremitchev, Boris B, Gorkun, Oleg V, Schoenfisch, Mark H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4988
container_issue 9
container_start_page 4979
container_title Langmuir
container_volume 24
creator Averett, Laurel E
Geer, Carri B
Fuierer, Ryan R
Akhremitchev, Boris B
Gorkun, Oleg V
Schoenfisch, Mark H
description During blood vessel injury, fibrinogen is converted to fibrin, a polymer that serves as the structural scaffold of a blood clot. The primary function of fibrin is to withstand the large shear forces in blood and provide mechanical stability to the clot, protecting the wound. Understanding the biophysical forces involved in maintaining fibrin structure is of great interest to the biomedical community. Previous reports have identified the “A−a” knob−hole interaction as the dominant force responsible for fibrin's structural integrity. Herein, biochemical force spectroscopy is used to study knob−hole interactions between fibrin fragments and variant fibrinogen molecules to identify the forces occurring between individual fibrin molecules. The rupture of the “A−a” knob−hole interaction results in a characteristic profile previously unreported in fibrin force spectroscopy with two distinct populations of specific forces:  110 ± 34 and 224 ± 31 pN. In the absence of a functional “A” knob or hole “a”, these forces cease to exist. We propose that the characteristic pattern represents the deformation of the D region of fibrinogen prior to the rupture of the “A−a” knob−hole bond.
doi_str_mv 10.1021/la703264x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69157105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69157105</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-4ad757741525c2430e0b7f621b62c1328b7ac4b7346976a78e8e0f1c6c76725d3</originalsourceid><addsrcrecordid>eNpt0M1uEzEUBWALgWgoLHgB5A1ILKb4_84sQyC0IhI_DVssj-ORXGbGU3uCkl2XrFm3L5cnqVGidMPKV_Kno6OD0EtKzihh9F1rgHCmxOYRmlDJSCFLBo_RhIDgBQjFT9CzlK4IIRUX1VN0QksuKVR0gn7OQje0buPHLQ4N3t3cTnd__prdzR3-3Ic63-ehdXju6-h7fNGPLho7-tDj7-63M61b4XqLp2PovMXzEK3Dl4OzYwzJhmH7HD1pTJvci8N7in7MPy5n58Xiy6eL2XRRGF7SsRBmBRJA5PLSMsGJIzU0itFaMUs5K2swVtTAhapAGShd6UhDrbKggMkVP0Vv9rlDDNdrl0bd-WRd25rehXXSqqISKJEZvt1Dmxum6Bo9RN-ZuNWU6H9j6uOY2b46hK7rzq0e5GG9DF4fgEnWtE00vfXp6FjOISWF7Iq982l0m-O_ib-0Ag5SL79e6nJJvn14vwAtH3KNTfoqrGOft_tPwXtxwZmX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69157105</pqid></control><display><type>article</type><title>Complexity of “A−a” Knob−Hole Fibrin Interaction Revealed by Atomic Force Spectroscopy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Averett, Laurel E ; Geer, Carri B ; Fuierer, Ryan R ; Akhremitchev, Boris B ; Gorkun, Oleg V ; Schoenfisch, Mark H</creator><creatorcontrib>Averett, Laurel E ; Geer, Carri B ; Fuierer, Ryan R ; Akhremitchev, Boris B ; Gorkun, Oleg V ; Schoenfisch, Mark H</creatorcontrib><description>During blood vessel injury, fibrinogen is converted to fibrin, a polymer that serves as the structural scaffold of a blood clot. The primary function of fibrin is to withstand the large shear forces in blood and provide mechanical stability to the clot, protecting the wound. Understanding the biophysical forces involved in maintaining fibrin structure is of great interest to the biomedical community. Previous reports have identified the “A−a” knob−hole interaction as the dominant force responsible for fibrin's structural integrity. Herein, biochemical force spectroscopy is used to study knob−hole interactions between fibrin fragments and variant fibrinogen molecules to identify the forces occurring between individual fibrin molecules. The rupture of the “A−a” knob−hole interaction results in a characteristic profile previously unreported in fibrin force spectroscopy with two distinct populations of specific forces:  110 ± 34 and 224 ± 31 pN. In the absence of a functional “A” knob or hole “a”, these forces cease to exist. We propose that the characteristic pattern represents the deformation of the D region of fibrinogen prior to the rupture of the “A−a” knob−hole bond.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la703264x</identifier><identifier>PMID: 18351791</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; Fibrin - chemistry ; General and physical chemistry ; Humans ; Spectrum Analysis ; Surface physical chemistry</subject><ispartof>Langmuir, 2008-05, Vol.24 (9), p.4979-4988</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-4ad757741525c2430e0b7f621b62c1328b7ac4b7346976a78e8e0f1c6c76725d3</citedby><cites>FETCH-LOGICAL-a381t-4ad757741525c2430e0b7f621b62c1328b7ac4b7346976a78e8e0f1c6c76725d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la703264x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la703264x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20320817$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18351791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Averett, Laurel E</creatorcontrib><creatorcontrib>Geer, Carri B</creatorcontrib><creatorcontrib>Fuierer, Ryan R</creatorcontrib><creatorcontrib>Akhremitchev, Boris B</creatorcontrib><creatorcontrib>Gorkun, Oleg V</creatorcontrib><creatorcontrib>Schoenfisch, Mark H</creatorcontrib><title>Complexity of “A−a” Knob−Hole Fibrin Interaction Revealed by Atomic Force Spectroscopy</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>During blood vessel injury, fibrinogen is converted to fibrin, a polymer that serves as the structural scaffold of a blood clot. The primary function of fibrin is to withstand the large shear forces in blood and provide mechanical stability to the clot, protecting the wound. Understanding the biophysical forces involved in maintaining fibrin structure is of great interest to the biomedical community. Previous reports have identified the “A−a” knob−hole interaction as the dominant force responsible for fibrin's structural integrity. Herein, biochemical force spectroscopy is used to study knob−hole interactions between fibrin fragments and variant fibrinogen molecules to identify the forces occurring between individual fibrin molecules. The rupture of the “A−a” knob−hole interaction results in a characteristic profile previously unreported in fibrin force spectroscopy with two distinct populations of specific forces:  110 ± 34 and 224 ± 31 pN. In the absence of a functional “A” knob or hole “a”, these forces cease to exist. We propose that the characteristic pattern represents the deformation of the D region of fibrinogen prior to the rupture of the “A−a” knob−hole bond.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>Fibrin - chemistry</subject><subject>General and physical chemistry</subject><subject>Humans</subject><subject>Spectrum Analysis</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1uEzEUBWALgWgoLHgB5A1ILKb4_84sQyC0IhI_DVssj-ORXGbGU3uCkl2XrFm3L5cnqVGidMPKV_Kno6OD0EtKzihh9F1rgHCmxOYRmlDJSCFLBo_RhIDgBQjFT9CzlK4IIRUX1VN0QksuKVR0gn7OQje0buPHLQ4N3t3cTnd__prdzR3-3Ic63-ehdXju6-h7fNGPLho7-tDj7-63M61b4XqLp2PovMXzEK3Dl4OzYwzJhmH7HD1pTJvci8N7in7MPy5n58Xiy6eL2XRRGF7SsRBmBRJA5PLSMsGJIzU0itFaMUs5K2swVtTAhapAGShd6UhDrbKggMkVP0Vv9rlDDNdrl0bd-WRd25rehXXSqqISKJEZvt1Dmxum6Bo9RN-ZuNWU6H9j6uOY2b46hK7rzq0e5GG9DF4fgEnWtE00vfXp6FjOISWF7Iq982l0m-O_ib-0Ag5SL79e6nJJvn14vwAtH3KNTfoqrGOft_tPwXtxwZmX</recordid><startdate>20080506</startdate><enddate>20080506</enddate><creator>Averett, Laurel E</creator><creator>Geer, Carri B</creator><creator>Fuierer, Ryan R</creator><creator>Akhremitchev, Boris B</creator><creator>Gorkun, Oleg V</creator><creator>Schoenfisch, Mark H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080506</creationdate><title>Complexity of “A−a” Knob−Hole Fibrin Interaction Revealed by Atomic Force Spectroscopy</title><author>Averett, Laurel E ; Geer, Carri B ; Fuierer, Ryan R ; Akhremitchev, Boris B ; Gorkun, Oleg V ; Schoenfisch, Mark H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-4ad757741525c2430e0b7f621b62c1328b7ac4b7346976a78e8e0f1c6c76725d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>Fibrin - chemistry</topic><topic>General and physical chemistry</topic><topic>Humans</topic><topic>Spectrum Analysis</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averett, Laurel E</creatorcontrib><creatorcontrib>Geer, Carri B</creatorcontrib><creatorcontrib>Fuierer, Ryan R</creatorcontrib><creatorcontrib>Akhremitchev, Boris B</creatorcontrib><creatorcontrib>Gorkun, Oleg V</creatorcontrib><creatorcontrib>Schoenfisch, Mark H</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averett, Laurel E</au><au>Geer, Carri B</au><au>Fuierer, Ryan R</au><au>Akhremitchev, Boris B</au><au>Gorkun, Oleg V</au><au>Schoenfisch, Mark H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity of “A−a” Knob−Hole Fibrin Interaction Revealed by Atomic Force Spectroscopy</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-05-06</date><risdate>2008</risdate><volume>24</volume><issue>9</issue><spage>4979</spage><epage>4988</epage><pages>4979-4988</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>During blood vessel injury, fibrinogen is converted to fibrin, a polymer that serves as the structural scaffold of a blood clot. The primary function of fibrin is to withstand the large shear forces in blood and provide mechanical stability to the clot, protecting the wound. Understanding the biophysical forces involved in maintaining fibrin structure is of great interest to the biomedical community. Previous reports have identified the “A−a” knob−hole interaction as the dominant force responsible for fibrin's structural integrity. Herein, biochemical force spectroscopy is used to study knob−hole interactions between fibrin fragments and variant fibrinogen molecules to identify the forces occurring between individual fibrin molecules. The rupture of the “A−a” knob−hole interaction results in a characteristic profile previously unreported in fibrin force spectroscopy with two distinct populations of specific forces:  110 ± 34 and 224 ± 31 pN. In the absence of a functional “A” knob or hole “a”, these forces cease to exist. We propose that the characteristic pattern represents the deformation of the D region of fibrinogen prior to the rupture of the “A−a” knob−hole bond.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18351791</pmid><doi>10.1021/la703264x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2008-05, Vol.24 (9), p.4979-4988
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_69157105
source MEDLINE; ACS Publications
subjects Chemistry
Colloidal state and disperse state
Exact sciences and technology
Fibrin - chemistry
General and physical chemistry
Humans
Spectrum Analysis
Surface physical chemistry
title Complexity of “A−a” Knob−Hole Fibrin Interaction Revealed by Atomic Force Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20of%20%E2%80%9CA%E2%88%92a%E2%80%9D%20Knob%E2%88%92Hole%20Fibrin%20Interaction%20Revealed%20by%20Atomic%20Force%20Spectroscopy&rft.jtitle=Langmuir&rft.au=Averett,%20Laurel%20E&rft.date=2008-05-06&rft.volume=24&rft.issue=9&rft.spage=4979&rft.epage=4988&rft.pages=4979-4988&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la703264x&rft_dat=%3Cproquest_cross%3E69157105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69157105&rft_id=info:pmid/18351791&rfr_iscdi=true