Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro
The potent CYP1A2 inhibitor fluvoxamine has recently been shown also to be an effective inhibitor of the CYP2C19-mediated metabolism of the antimalarial drug proguanil in vivo. The purpose of the present study was to confirm this interaction in vitro. A high-performance liquid chromatography (HPLC)...
Gespeichert in:
Veröffentlicht in: | European journal of clinical pharmacology 1998-11, Vol.54 (9-10), p.735-740 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The potent CYP1A2 inhibitor fluvoxamine has recently been shown also to be an effective inhibitor of the CYP2C19-mediated metabolism of the antimalarial drug proguanil in vivo. The purpose of the present study was to confirm this interaction in vitro.
A high-performance liquid chromatography (HPLC) method was developed to assay 4-chlorophenylbiguanide (4-CPBG) and cycloguanil formed from proguanil by microsomes prepared from human liver. The limit of detection was 0.08 nmol mg-'. h-I.
The formation of 4-CPBG and cycloguanil could be described by one-enzyme kinetics, indicating that the formation of the two metabolites is almost exclusively catalysed by a single enzyme, i.e. CYP2C19 within the concentration range used, or that the contribution of an alternative low-affinity enzyme, probably CYP3A4, is very low. This notion was confirmed by the lack of potent inhibition by four CYP3A4 inhibitors: ketoconazole, bromocriptine, midazolam and dihydroergotamine. Fluvoxamine was a very effective inhibitor of the oxidation of proguanil, displaying Ki values of 0.69 micromol x l(-1) for the inhibition of cycloguanil formation and 4.7 micromol x l(-1) for the inhibition of 4-CPBG formation. As expected, the CYP2C19 substrate omeprazole inhibited the formation of both metabolites with an IC50 of 10 micromol x l(-1). Norfluoxetine and sulfaphenazole inhibited proguanil oxidation with Ki values of 7.3-16 micromol x l(-1), suggesting that the two compounds are moderate inhibitors of CYP2C19.
Fluvoxamine is a fairly potent inhibitor of CYP2C19 and it has the potential for causing drug-drug interactions with substrates for CYP2C19 such as imipramine, clomipramine, amitriptyline and diazepam. The combination of fluvoxamine and proguanil can not be recommended. |
---|---|
ISSN: | 0031-6970 1432-1041 |
DOI: | 10.1007/s002280050544 |