Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper
This paper describes the use of a modified x,y-plotter to generate hydrophilic channels by printing a solution of hydrophobic polymer (pol(dimethylsiloxane; PDMS) dissolved in hexanes onto filter paper. The PDMS penetrates the depth of the paper and forms a hydrophobic wall that aqueous solutions ca...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2008-05, Vol.80 (9), p.3387-3392 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3392 |
---|---|
container_issue | 9 |
container_start_page | 3387 |
container_title | Analytical chemistry (Washington) |
container_volume | 80 |
creator | Bruzewicz, Derek A Reches, Meital Whitesides, George M |
description | This paper describes the use of a modified x,y-plotter to generate hydrophilic channels by printing a solution of hydrophobic polymer (pol(dimethylsiloxane; PDMS) dissolved in hexanes onto filter paper. The PDMS penetrates the depth of the paper and forms a hydrophobic wall that aqueous solutions cannot cross. The minimum size of printed features is ∼1 mm; this resolution is adequate for the rapid prototyping of hand-held, visually read, diagnostic assays (and other microfluidic systems) based on paper. After curing the printed PDMS, the paper-based devices can be bent or folded to generate three-dimensional systems of channels. Capillary action pulls aqueous samples into the paper channels. Colorimetric assays for the presence of glucose and protein are demonstrated in the printed devices; spots of Bromothymol Blue distinguished samples with slightly basic pH (8.0) from samples with slightly acidic pH (6.5). The work also describes using printed devices that can be loaded using multipipets and printed flexible, foldable channels in paper over areas larger than 100 cm2. |
doi_str_mv | 10.1021/ac702605a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69153430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69153430</sourcerecordid><originalsourceid>FETCH-LOGICAL-a509t-d75935f4e97cb611be2ef4d3815bdf802af5edf8ca8bc39a91a3137c8693b77b3</originalsourceid><addsrcrecordid>eNpl0FFrUzEUB_AgiuumD34BuQgO93D1JGmSm0dXrRMqXlyHjyE3N3GZt0mX3OL67Y20tDCfciA__pzzR-gVhvcYCP6gjQDCgeknaIIZgZo3DXmKJgBAayIATtBpzncAGAPmz9EJbiilnIgJulnEP_Us5rFqkw-jD7-q6Ko2Dtt3vV_Z8XY7ZD_EBx3sRXWpU_I25WoZq0_W-WCrb96kaG51CHbIlQ9Vq9c2vUDPnB6yfbl_z9DN_PNydlUvvn_5Ovu4qDUDOda9YJIyN7VSmI5j3Fli3bSnDWZd7xog2jFbBqObzlCpJdYUU2EaLmknREfP0Pkud53i_cbmUa18NnYYyrpxkxWXmNEphQLfPIJ3cZNC2U0RLBoJIHlBFztUTso5WafWya902ioM6l_R6lB0sa_3gZtuZfuj3DdbwNs90NnowSUdjM8HR4ASKgUtrt45n0f7cPjX6bfiggqmlu21mrfw8_rHnCl8zNUmH4_4f8G_EcOfYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217890096</pqid></control><display><type>article</type><title>Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bruzewicz, Derek A ; Reches, Meital ; Whitesides, George M</creator><creatorcontrib>Bruzewicz, Derek A ; Reches, Meital ; Whitesides, George M</creatorcontrib><description>This paper describes the use of a modified x,y-plotter to generate hydrophilic channels by printing a solution of hydrophobic polymer (pol(dimethylsiloxane; PDMS) dissolved in hexanes onto filter paper. The PDMS penetrates the depth of the paper and forms a hydrophobic wall that aqueous solutions cannot cross. The minimum size of printed features is ∼1 mm; this resolution is adequate for the rapid prototyping of hand-held, visually read, diagnostic assays (and other microfluidic systems) based on paper. After curing the printed PDMS, the paper-based devices can be bent or folded to generate three-dimensional systems of channels. Capillary action pulls aqueous samples into the paper channels. Colorimetric assays for the presence of glucose and protein are demonstrated in the printed devices; spots of Bromothymol Blue distinguished samples with slightly basic pH (8.0) from samples with slightly acidic pH (6.5). The work also describes using printed devices that can be loaded using multipipets and printed flexible, foldable channels in paper over areas larger than 100 cm2.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac702605a</identifier><identifier>PMID: 18333627</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Aqueous chemistry ; Aqueous solutions ; Chemical products ; Chemistry ; Colorimetry - methods ; Dimethylpolysiloxanes - chemistry ; Dimethylpolysiloxanes - economics ; Exact sciences and technology ; Glucose - analysis ; Hexanes - chemistry ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Microfluidics - economics ; Microfluidics - methods ; Polymers ; Printing - economics ; Printing - methods ; Proteins - analysis ; Reagent Strips ; Spectrometric and optical methods</subject><ispartof>Analytical chemistry (Washington), 2008-05, Vol.80 (9), p.3387-3392</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society May 1, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a509t-d75935f4e97cb611be2ef4d3815bdf802af5edf8ca8bc39a91a3137c8693b77b3</citedby><cites>FETCH-LOGICAL-a509t-d75935f4e97cb611be2ef4d3815bdf802af5edf8ca8bc39a91a3137c8693b77b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac702605a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac702605a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20323973$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18333627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruzewicz, Derek A</creatorcontrib><creatorcontrib>Reches, Meital</creatorcontrib><creatorcontrib>Whitesides, George M</creatorcontrib><title>Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>This paper describes the use of a modified x,y-plotter to generate hydrophilic channels by printing a solution of hydrophobic polymer (pol(dimethylsiloxane; PDMS) dissolved in hexanes onto filter paper. The PDMS penetrates the depth of the paper and forms a hydrophobic wall that aqueous solutions cannot cross. The minimum size of printed features is ∼1 mm; this resolution is adequate for the rapid prototyping of hand-held, visually read, diagnostic assays (and other microfluidic systems) based on paper. After curing the printed PDMS, the paper-based devices can be bent or folded to generate three-dimensional systems of channels. Capillary action pulls aqueous samples into the paper channels. Colorimetric assays for the presence of glucose and protein are demonstrated in the printed devices; spots of Bromothymol Blue distinguished samples with slightly basic pH (8.0) from samples with slightly acidic pH (6.5). The work also describes using printed devices that can be loaded using multipipets and printed flexible, foldable channels in paper over areas larger than 100 cm2.</description><subject>Analytical chemistry</subject><subject>Aqueous chemistry</subject><subject>Aqueous solutions</subject><subject>Chemical products</subject><subject>Chemistry</subject><subject>Colorimetry - methods</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Dimethylpolysiloxanes - economics</subject><subject>Exact sciences and technology</subject><subject>Glucose - analysis</subject><subject>Hexanes - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Microfluidics - economics</subject><subject>Microfluidics - methods</subject><subject>Polymers</subject><subject>Printing - economics</subject><subject>Printing - methods</subject><subject>Proteins - analysis</subject><subject>Reagent Strips</subject><subject>Spectrometric and optical methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0FFrUzEUB_AgiuumD34BuQgO93D1JGmSm0dXrRMqXlyHjyE3N3GZt0mX3OL67Y20tDCfciA__pzzR-gVhvcYCP6gjQDCgeknaIIZgZo3DXmKJgBAayIATtBpzncAGAPmz9EJbiilnIgJulnEP_Us5rFqkw-jD7-q6Ko2Dtt3vV_Z8XY7ZD_EBx3sRXWpU_I25WoZq0_W-WCrb96kaG51CHbIlQ9Vq9c2vUDPnB6yfbl_z9DN_PNydlUvvn_5Ovu4qDUDOda9YJIyN7VSmI5j3Fli3bSnDWZd7xog2jFbBqObzlCpJdYUU2EaLmknREfP0Pkud53i_cbmUa18NnYYyrpxkxWXmNEphQLfPIJ3cZNC2U0RLBoJIHlBFztUTso5WafWya902ioM6l_R6lB0sa_3gZtuZfuj3DdbwNs90NnowSUdjM8HR4ASKgUtrt45n0f7cPjX6bfiggqmlu21mrfw8_rHnCl8zNUmH4_4f8G_EcOfYg</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Bruzewicz, Derek A</creator><creator>Reches, Meital</creator><creator>Whitesides, George M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080501</creationdate><title>Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper</title><author>Bruzewicz, Derek A ; Reches, Meital ; Whitesides, George M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a509t-d75935f4e97cb611be2ef4d3815bdf802af5edf8ca8bc39a91a3137c8693b77b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical chemistry</topic><topic>Aqueous chemistry</topic><topic>Aqueous solutions</topic><topic>Chemical products</topic><topic>Chemistry</topic><topic>Colorimetry - methods</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Dimethylpolysiloxanes - economics</topic><topic>Exact sciences and technology</topic><topic>Glucose - analysis</topic><topic>Hexanes - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Microfluidics - economics</topic><topic>Microfluidics - methods</topic><topic>Polymers</topic><topic>Printing - economics</topic><topic>Printing - methods</topic><topic>Proteins - analysis</topic><topic>Reagent Strips</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruzewicz, Derek A</creatorcontrib><creatorcontrib>Reches, Meital</creatorcontrib><creatorcontrib>Whitesides, George M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruzewicz, Derek A</au><au>Reches, Meital</au><au>Whitesides, George M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>80</volume><issue>9</issue><spage>3387</spage><epage>3392</epage><pages>3387-3392</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>This paper describes the use of a modified x,y-plotter to generate hydrophilic channels by printing a solution of hydrophobic polymer (pol(dimethylsiloxane; PDMS) dissolved in hexanes onto filter paper. The PDMS penetrates the depth of the paper and forms a hydrophobic wall that aqueous solutions cannot cross. The minimum size of printed features is ∼1 mm; this resolution is adequate for the rapid prototyping of hand-held, visually read, diagnostic assays (and other microfluidic systems) based on paper. After curing the printed PDMS, the paper-based devices can be bent or folded to generate three-dimensional systems of channels. Capillary action pulls aqueous samples into the paper channels. Colorimetric assays for the presence of glucose and protein are demonstrated in the printed devices; spots of Bromothymol Blue distinguished samples with slightly basic pH (8.0) from samples with slightly acidic pH (6.5). The work also describes using printed devices that can be loaded using multipipets and printed flexible, foldable channels in paper over areas larger than 100 cm2.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18333627</pmid><doi>10.1021/ac702605a</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2008-05, Vol.80 (9), p.3387-3392 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_69153430 |
source | MEDLINE; ACS Publications |
subjects | Analytical chemistry Aqueous chemistry Aqueous solutions Chemical products Chemistry Colorimetry - methods Dimethylpolysiloxanes - chemistry Dimethylpolysiloxanes - economics Exact sciences and technology Glucose - analysis Hexanes - chemistry Hydrogen-Ion Concentration Hydrophobic and Hydrophilic Interactions Microfluidics - economics Microfluidics - methods Polymers Printing - economics Printing - methods Proteins - analysis Reagent Strips Spectrometric and optical methods |
title | Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Cost%20Printing%20of%20Poly(dimethylsiloxane)%20Barriers%20To%20Define%20Microchannels%20in%20Paper&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Bruzewicz,%20Derek%20A&rft.date=2008-05-01&rft.volume=80&rft.issue=9&rft.spage=3387&rft.epage=3392&rft.pages=3387-3392&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac702605a&rft_dat=%3Cproquest_cross%3E69153430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217890096&rft_id=info:pmid/18333627&rfr_iscdi=true |